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Abstract

Extensible software systemshave beenincreasinglydemandedas a means
of supporting in a more faithful way constarily changinguserrequiremerts and
also as a necessaryogical courterpart to rapidly ewlving networking architec-
tures. Sud terms as open, recon gurable, mobile and re exive have beenused
to attempt to descrike relevant facetsof this kind of reactive systemwith dynam-
ically varying functionality or structure. In this thesis, we not only characterise
extensiblesystemsbut alsostudy their rigorous design.

We advocate a proof-theoretic step-by-step approad to the dewvelopmern
of extensiblesystemsas a meansof ensuringcorrectnessmodularity and incre-
mertability. By spelling out their characteristicsand identifying correspnding
logical constructions,we presen asan original foundational cortribution a rst-
order branching time logical systemthat seemsto be appropriate as a basis
for speci cation and veri cation. Even though our software processapproad
is proof-theoretic, we provide both model and proof theoriesfor the proposed
system, studying in the cortext of generallogicsimportant properties sud as
soundnesscompletenessand expressieness. We argue that other logical sys-
tems proposedin the literature are not adequateto achieve the samedesirable
e ects in design.

We also study particular software dewelopmen approades basedon the
actor model, on dynamic sub-classingand on meta-lewel architectures which
could best underpin the rigorous designof extensible systems. Speci ¢ design
principles are proposedin the form of derived inferencerules with their applica-
tion guidelinesand composability notions are studied in terms of categoriesof
theory presemations. We show that reasoningabout their local properties can
be carried out basedonly on sud constructionsbut global properties may not
be veri ed without the additional aid of a rely-guarartee discipline. A seriesof
helpful theoremsand realistic examplesare deweloped to support and illustrate
how our ideascan be e ectively applied in practice.
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Chapter 1

In tro duction

This thesisis about theoretical foundationsfor the designof extensiblesoftware
systems. This meansthat we are interested in providing here a characterisa-
tion of extensible systemsas well as studying formal theoriesto support their
rigorous speci cation and veri cation. As sud, the thesis can be regardedas
the outcome of researb in three distinct subject areas: Theory of Computing,
Software Engineeringand Distributed Systems.

The pressingneedto support distributed extensiblesystemshas recertly
appeared as a result of technological innovation. At the current momernt, it
is possibleto use portable computers, cellular phones, personal digital assis-
tants and other devicesconnectedto worldwide networks, which arein this way
sparselydistributed and fairly heterogeneousBecausethe interconnectionsbe-
tweenthese hardware componerts may changeat any time and it is normally
possibleto attach new equipmen to the network and disconnectsome of its
parts, it seemdo be reasonableo considerthis architectural style asextensible.
The required software componerts that populate these machines may in turn
be remotely used,created and recon gured. Moreover, it is often the casethat
sud componerts can move from one node of the architecture to another. End
userscorrectly perceiwe thesemovemers through revisionsin the functionality
provided at their currert location. Software systemsorganisedin this way as
well as someof their sub-systemscan again be regardedas extensible.

The samesort of software systemis desirablefor other reasonsif we ex-
amine their engineeringprocess. Clearly, to design,implemert, test and make
a software systemavailable for usemay take su cient time to allow the initial
requiremens to changein perhapsunpredictable ways. In those caseswvhereit
is feasibleto designthe systemsothat it can be dynamically altered according
to some particular customer needs,sud solution appearsto be more corve-
nient becauseit may avoid maintenance. Depending on the way the system
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2 Chapter 1. Introduction

was designed,modi cations may be producedby ageris sud asthe end user,
the (meta-lewel) objects presen in the operational environmert and soon, and
marny may be the methods supporting this processof change, by interacting
with an appropriate sub-systemor by using the whole systemto re ne a model
causallyconnectedto its own behaviour, for example. Thesemethods may alter
the current functionality and structure of the systemto sud an externt that yet
again software systemswith thesecharacteristicscan be regardedas extensible.

It is not dicult to gure out that the characteristicsabove turn the de-
velopmen of extensible systemsinto an activity even more di cult and error
pronethan usual. It is well-known on the one hand that, given a set of require-
merts, the unique way of ensuringthe correctnessof an implemertation with
respect to theserequiremens, meaningthat no errors were introducedthrough-
out the dewelopmen of the system,is to adopt a (set of) logical system(s)and
useformal, theoretical constructionsto prove that the implemertation satis es
the speci cation of the requiremens and is therefore a valid realisation of the
system. To verify that intuitiv e properties follow from a set of speci cations
alsoincreaseson dencein the adequacyof eat proposeddesign. On the other
hand, the step-by-step, systematic developmen of extensible systemspreseits
its own peculiarities, which appearto demandparticular logical systemsto allow
if not a formal at leasta rigoroustreatment. We dewte this thesisto the study
of isolated designsin this processand their formal theories.

1.1 What is Extensibilit y?

It shouldbe evidert at this point that extensibility is intrinsically related to the
possibility of change. It hasbeenclaimed sincethe early days of Software Engi-
neeringthat the right way of dealing with changethroughout the dewelopmen
processis to articipate them as much as possible(Parnas 1978). In e ect, ex-
tensibility is an outcomeof anticipation. To classifythe distinct typesof change
software artifacts and related objects may su er appearsto be necessanhere.

1.1.1 A Classication of Software Changes

The occurrenceof changesthroughout the life cycle of a systemcan a ect two
distinct kinds of ertit y: speci cations during designand the state of both system
and environment after deploymernt. Static changes,which a ect a systemde-
scription, are classi ed into enda@yenousand exa@enousby Lehmanet al. (1984)
depending on the origin of the requestfor changes. If a changeis required
due to decisionsmade during the design, perhapsbecausethey have made the
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continuation of the processimpossible,the changeis regardedas endogenous.
Otherwise, if the changeis causedby a modi cation in customerrequiremerts,
it is consideredto be exogenous.While static changesoblige the designerto
badktrack in the project, dynamic changesare a result of systembehaviour.

Accordingto this classi cation, it is possiblethat somechangebe regarded
as both static and dynamic. For example,if a systemkeepsa model causally
connectedto (part of) its own behaviour and allows this model to be changed
at run time, the description of the systemwill have changedas well asits be-
haviour after somemodi cations in the model. An exampleof this functionality
is preseted by the text editor Emacs(Stallman 1981). Software systemswritten
in interpreted languagesand re ectiv e software architectures provide other real
examplesof this kind. We shall return to theseexamplesin the sequel.

There is an additional classi cation of dynamic changeswhich is often
usefulin describingthe properties of software systems. A changeis said to be
functional wheneer it resultsin somemaodi cation in the functionality provided
by the system. In addition, the changeis structural if it implies a reorganisation
of the interconnectionsbetween componerts of the system. Depending on the
objects a ected by a change, it is again possibleto classify the samechange
in both categories.For example,in a telecomnunications network, if a calling-
number paging servicebecomesavailable whene\er a call-forward serviceis not
accessibleasa result of applying this rule part of the network must facea struc-
tural changewhereasthe whole systemwill have su ered a functional change.
For a software systemto be really extensible,to support someof thesetwo types
of changeis a necessaryequiremen. As a corollary of this imperative, we ob-
tain that purely functional programscannot be extensibleasit is impossibleto
capture notions of state and changein this way.

A characterisation of extensibility can be derived from the allowed degree
of dynamic changes. We sgy that a software systemis customisablewheneer
dynamic changesrange only over secondclassertities sud as constars from a
xed set. Cornversely a systemis said to be extensibleif changesalso encom-
pass rst classobjects, which are dynamically created, altered and referenced.
For instance,if a Lisp program may only read con guration les not cortaining
function de nitions, if someconcurrert processesnly admit a xed setof con g-
urations, these systemsare consideredto be customisable.Otherwise, they are
regardedas extensible. Bearing in mind this de nition, it is easyto understand
why Agha (1986) regardsopennessas a prerequisite for extensibility: without
consideringthe existenceof an ervironmernt and the ability to interact with
other similar componerts therein, a systemcannot be regardedas extensible.
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1.1.2 Related Terminology

In orderto further clarify the notion of an extensiblesoftware system,let us ex-
amine other terms which may at rst seemto be directly related to extensibility
but in fact refer, asthey are de ned in the literature, to many distinct stagesof
the dewelopmert process.

The terms adaptable(Alencar et al. 1995) and adaptive(Lieberherr et al.
1994)have beenboth usedto stand in more or lessdetail for a software dewelop-
mert technique wherely software artifacts, speci cations and implemertations,
are de ned in a genericway soasto allow further particularisation, which may
turn out to be subsequetly necessaryDependingon whetheror not there exists
a systematicmethod for deriving particular instancesfrom eat genericdescrip-
tion, the term adaptive is used. In both cases,the main focus of attention is
in obtaining artifacts to sere as a practical basisfor reusein more advanced
stagesof the dewelopmen of the samesystem or throughout the life cycle of
other systems.

Lehmanand Belady (1985) useevolvabilityto make referenceto the prop-
erty enjoyed by somesystemsof easily allowing maintenance. Kamel (1987)
arguesthat this property is fundamenally related to the modular character of
system componers. Clearly, ewlvability presuppsesthat somedesign steps
have already happenedand assertshow easyit is to badtrack in the process.
Parnas (1978) in his paper was really referring to ewlvable systems,proposing
in addition techniquesto ensuremodularity and extensibility.

As an aside, it is important to mertion that for historical reasonswe have
chosento use here extensibleas the agship word to stand for the family of
software systemswe are interested in treating. The sameterm has beenused
by Matsuoka (1993) only to make referenceto concurrert re ectiv e object-based
architectures and their features. It would certainly be incorrect in the cortext
of this thesisto infer that, becausewe claim to be interestedin dealingwith ex-
tensible systems,to obsene them preseriing at somemomert lessfunctionality
than in a previousinstant would be forbidden. Of course,we strive to support
equally not only the designof extensionand cortraction, being two facesof the
samecoin, but of any kind of dynamic changeas well.

1.1.3 Approac hes to Support Extensibilit y

Many ways of dealing with the designand implemertation of software systems
have beenstudied in the literature servingas meansto guarartee extensibility.
As a generalrule, these approades do not depend on any particular level of
abstraction to be adopted and fall into one of the following categories:
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open recon gurabilit y: Distributed systemsconsistin collections of loosely
interconnectedcomponerts. When sud interconnectionsmay vary at run
time due to the addition of new componerts and as a result of changesin
establishedconnections,we say that the systemis recon gurable More-
over, if it is possiblefor the systemto interact at some point with an
ervironment over which little if any cortrol is kept, we say that the sys-
tem is alsoopen. The actor model initially proposedby Hewitt and Baker
(1977)and later re ned by Clinger (1981), Agha (1986)and Talcott (1997)
appearsto be the most faithful represetativ e of this approad;

dynamic sub-classing: The notion of classis widely know within the object-
baseddesigncommunity as de ning collectionsof objects with the same
behavioural characteristics(Wegner1987). If it is possiblefor an object to
migrate from one classto another at run time, we say that dynamic sub-
classingis supported. This should not to be confusedwith inheritance,
which is a reusetechnique basedon the hierarchical organisationof object
descriptions. A detailed formal treatment of dynamic sub-classinghas
beendeweloped by Wieringa et al. (1995);

meta-arc hitectures: Computational objects are de ned in terms of a set of
primitiv e notions. Provided that it is possiblefor someobjects to manipu-
late (a number of) thesenotions asif they were corvertional data objects,
we s& that meta-levelfacilities are supported by the architecture. The
most generalcaseof meta-leel support is that of computationalre ection,
whereinead object carriesa description of its own behaviour and behaves
in a way causally connectedto sud a description (Maes 1987).

The approadiesabove are basedon distinct notions and give riseto exten-
sible systemswith diversefeatures. Not all of them are fully compatiblewith the
convertional conceptof rigorous stepwise dewelopmen. In the following chap-
ters, we shall study how to designsystemsin someof theseways, clarifying the
reasonsfor regarding the others as unsuitable.

1.2 Formal Design of Extensible Systems

It haslong beenrecognised(and neglected)that software systemsmust be de-
signedaccordinglyif they are to be extensible. Parnas (1978) recallsthat:

The usual programming coursesneither mertion the needto antici-
pate changenor do they o er techniquesfor designingprogramsin
which changesare easy (Parnas 1978)
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If we want to considerin a formal way the designof extensiblesystemsthe
situation is even worse. Kramer and Magee (1990), for example, studying the
properties of dynamically changing distributed applications, had to dewlop all
their analysesn atextual, informal manner. This is not a generalproblem ssince
well-establishedformal methods which can deal with partial correctnessand
someforms of termination do exist. VDM (Jones1990)and Z (Spivey 1989)are
classicalexamplesbut these methods cannot addressany form of concurrency
UNITY (Chandy and Misra 1988)overcomesthis limitation, although it is not
meart for designingopensystems,asiderti ed by Fiadeiro and Maibaum (1997).
The problem here appearsto lie in the fact that thesemethods were deweloped
without having in mind any of the aforemenioned extensibility approades.

In e ect, extensiblesystemsare reactive systemswith dynamically vary-
ing functionality or structure. In this cortext, the veri cation of termination
properties becomedessimportant whereasthe possibility of describingconcur-
rent behaviour is paramourt giventhat sud systemsmay bein cortinuousand
simultaneousinteraction with many agens in their operational environmert. In
mary casestermination is not only unnecessarybut also forbidden as a viola-
tion of a safely property of the system. Moreover, characteristics like naming,
which we shall examinein detail later on, are alsoimportant in order to deal
with recon gurability and openness.The most prominert formal methods and
techniguesdewted to capturing thesenotions are examinedbelow.

1.2.1 Process Calculi and Extensibilit y

Processesand systematic methods of reasoningbasedon this notion have been
around in polished form sincethe publication of the inspiring paper by Hoare
(1978)on the speci cation languageCSP. Later on, Hoare (1985) alsodeweloped
a collection of proof rules to allow the veri cation of syndironous concurren
programs. A di erent theory distinguishing more processnon-determinismthan
CSP was deeloped by Milner (1980) and called CCS. Milner (1983) alsointro-
duceda distinction betweensyndironousand asyndronousmodesof interaction
in two di erent processcalculi basedon CCS. In addition, he extensiwely studied
notions of equivalencefor processegMilner 1989).

In spite of the widespreaduseof CSP and CCS, it soon becameclear that
sud languagescould not support in direct ways the speci cation of systemsof
recon gurable nature. Moreover, the practice of designingdistributed systems
showved that more speci ¢ modesof interaction betweenprocesswvould be neces-
saryto cover someapplicationsin a realistic manner. Thomsen(1991) proposed
two higher-order calculi of processeswhere full ertities of this kind could be



1.2. Formal Designof Extensible Systems 7
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Figure 1.1: Evolution of processdesignlanguages.

transmitted as a result of interaction. Honda and Tokoro (1991) opted in the
-calculusfor asyntironous named objects so that only namesinstead of rst
classentities could be transmitted in messages.Milner et al. (1992) also pre-
ferred namedentities in the -calculus,sticking to a formalism consideringonly
syndironous processesvith recon gurable interconnectiontopology:.

The carefulreadermay have noticed that thesere ned processcalculi cor-
respond in a way to ead of the approadeslisted in the previoussection,which
aim to obtain extensible systemsas an outcome of the dewelopmer process.
The -calculusof Milner et al. (1992)in particular would appearto be the ideal
formalism to adopt in designingextensiblesystemssincethe object calculus of
Hondaand Tokoro (1991),the higher-ordercalculusof Thomsen(1991)and also
the lazy -calculusof Abramsky (1990) can all be faithfully embeddedin this
formalism, asillustrated in Figure 1.1. Howewer, processcalculi alonealsohave
their limitations sud as the impossibility of specifying and verifying liveness
properties, which somereal systemsmust evertually full. This is madeworse
by the fact that in a stepwise dewelopmen processsomeertities may needto
be represetted as part of a designbut will not (and sometimescannot) be re-
ned into processesn the usual computational sense.Thesereasonsead us to
agreewith Tokoro (1993)in that processesppearto be a better abstraction for
understandingimplemertations and the semartics of concurrert programming
languageghan they areto provide an organisedand realistic view of the problem
domain. We are thus compelled to look after another kind of formalism.
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1.2.2 Temporal Logic and Extensibilit y

Temporal logic has been applied with great successto the speci cation and
veri cation of software systemssince the seminalwork of Pnueli (1977). The
ewlution of this subject area has been constart. Manna and Pnueli (1983)
shoved how temporal proof systemscould be assaiated to (concurrert) pro-
gramming languagesin a natural way. Barringer (1987) solved the important
composability problem, making it possibleto rely on the structure of eat pro-
gram in proving temporal properties. Fiadeiro and Maibaum (1992) raised the
abstraction level of his work by shawving that open concurrent systemscould
be designedin a modular way in terms of temporal theories. Their results were
further extendedby Sernadaset al. (1995), who deweloped a temporal logic suit-
able for object-oriented systemsdesign. Mearwhile, Lamport (1994) and Abadi
(1996) have applied the Temporal Logic of Actions in a multitude of domains,
treating in particular the dewelopmen of distributed fault-tolerant systems.

Despitetheseadvances,it is surprisingto discover that the designof open
recon gurable systemscannot be directly addressedn detail with any temporal
logical systemproposedin the literature. In particular, attempting to represen
the properties of objects accordingto the actor model, one easily discovers that
a logic which can properly handle object naming as well as presening a set of
connectives with the required meaning is not available. These characteristics
are neededin represeting someextensiblesystemsaccurately

If comparedto processcalculi, temporal logicsare not suitable for dealing
with processor program equivalencesbut have the fundamertal advantage of
not committing the whole dewelopmen processto a xed abstraction level nor
to a xed abstraction notion, depending of courseon how they are de ned. The
designunits may represemh programs, processestheories, objects and others.
Temporal speci cations in turn may or may not be realisable as executable
ertities (Abadi et al. 1989). Emerson(1983) proposesa helpful classi cation of
temporal logical systemsin exgenousand endgenousdepending on whether or
not expressiongertaining to the domain of someabstraction notion are covered
in the de nition of the logicallanguage.Remarkably, all the modal and temporal
logicsassaiated to processcalculi sud asthat deweloped by Milner et al. (1993)
are of an exogenousature. Corversely to achieve enoughfreedomto apply a
temporal logic in describingmany problem domainsat potentially distinct levels
of abstraction, the logic must be an endogenousne. In this thesis, we de ne
and analysean endogenougemporal logical system.
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1.3 Aims of the Thesis

To summarisewhat we have already discussedn this chapter, let usrevisit some
of the aims of this thesis. Namely, we have hoped to:

idertify what it meansfor a software systemto be extensible;
idertify software developmen approadeswhich support extensibility.

We have already provided practical reasonsand examplesthat justify the great
importance currertly attributed to extensiblesystems. We have also provided
an informal de nition of extensibility in terms of possiblerun time changesand,
in addition, a comparisonwith other related software processnotions. These
dewelopmernts allow us to claim that we have characterisedextensible software
systems.No similar characterisation appearsto exist in the literature.

An informal characterisationis not su cient to support the designof the
family of software systemswe are aiming at here. In Section1.2, we examined
someclasseof theoretical frameworks which are available in the literature and
could perhapsbe adoptedto attempt to accomplishthe following two goals:

to establishtheoretical foundationsfor the designof extensiblesystems;

to show that thesefoundationscan be appliedin practice to designexten-
sible systemsin a rigorous way.

We have argued that the existing formal frameworks cannot be directly ap-
plied to designextensible systems. Therefore, by establishingour own formal
foundationsin terms of a speci ¢ temporal logical system, we aim to support
their rigorous designand to be able to cortrast to ead other in an unambigu-
ous manner the characteristics of extensible systemsreported in the previous
sections, i.e., their designspace(Wegner1987). This study may be usefulin
decidingwhich approad to usein represeting the distinct situations that arise
in practice. The remainder of the thesisdealswith theseissues.

1.4 Outline of the Thesis

Most of the following chapters have the same xed structure. In the beginning
of ead chapter, we shall presen either a (not necessarilycomplete) historical
retrospective or cortextual information which motivatesour work. Tednical re-
sults are subsequetty presetned and discussed.The last sectionof ea chapter
summarisesheseresults and cortrasts them to other related work.
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Chapter 2 dewelopsour proof-theoretic approad to software developmert.
It begins by describing a rigorous step-by-step way of dealing with software
dewelopmen and its connectionswith the formal structures of generallogics.
We examinethese connectionswith the aid of categorytheory. In the light of
this study, we presen an incremenal axiomatisation of a rst-order branding
time logic that appearsto be an appropriate basisfor the designof extensible
systems. We examinein detail somecharacteristics of the logical system suc
as soundnesscompletenessaind expressieness.

The subsequen chapter of the thesis shovs how to designopen recon g-
urable systemsusing a particularisation of the logical systempreviously de ned.
We speci cally examinein full detail the actor model, proposing an axiomati-
sation for its featuresand studying the composition of actor speci cations in
terms of pushoutsin categoriesof theory presertations. We also show that the
model is su cien tly abstract to capture not only distinct modes of interaction
but alsomany approadiesto support extensibility. To verify properties of actor
systemsin a rigorous manner, we adopt a rely-guarartee discipline and prove
somemeta-logical properties that are helpful in practice.

We cortinue the investigationon applying our temporal logical systemwith
a study of computational re ection and the designof meta-le\el architecturesin
Chapter 4. We show that the assumptionof meta-lewel architectures is reason-
able in the designof open recon gurable systemsasformalisedin the preceding
chapter. We alsoshaw that the designof meta-lewel architectures, despitetheir
apparertly circular de nition, doesnot requirelogicswith higher-orderfeatures.
Moreover, we show that the assumptionof an underlying re ectiv e architecture
con icts with systematic software dewelopmert.

Chapter 5 presetts a realistic casestudy on applying the formal dewelop-
merts of the thesis. We presen the speci cation and veri cation of a location
managemen architecture in order to illustrate how to designin a rigorous man-
ner software systemsthat can be extendedby mobile componens.

The last chapter of the thesisis dedicatedto summarisingour work and
to preseining not only our conclusionsbut also prospects for future researab.

Throughout the thesis, we attempt to useuniform notation and terminol-
ogy. Indexespointing to our notational and conceptualde nitions are provided
at the end of the text, after the bibliography details. Two appendixesare also
provided at the end cortaining the statemert and some proofs of properties
assumedn the body of the thesis.



Chapter 2

Pro of Theory and Software
Dev elopmen t

Sincethe seminalwork of Floyd (1967),we have hopedto dewelopan appropriate
theory to support rigorous software dewelopmen. With his inspiring method,
Floyd was the rst to attempt to ensurein a formal systematic manner that
computer programsperform only valid computations, in spite of the practice at
that time which wasto de ne merely how eat program should compute. His
work was certred on ass@iating in a preciseway logical assertionsto program
fragmerts so asto make possiblethe proof of partial correctnessand termina-
tion properties. Admittedly, his method could not scaleup to handle the full
complexity of real software systemsand programming languages.

Another landmark in rigorous software dewlopmen was the advent of
abstract data types(ADTs) asproposedby Liskov and Zilles (1975). ADTs are
formal self-cornained descriptionsof data typesand operationsin terms of which
the wholedewelopmen processmay be understood. They arenot meart to stand
only for computer programs becausethe focus of attention in their de nition
is to descrile in a property-oriented relational manner the problem domain,
rather than computations, introducing the notion of abstraction in software
dewelopmen. Implemertations of ADTs in real programming languageswould
be obtained at the last stagesof the processafter a seriesof re nemernts.

The studieson the theory of ADTs proved to be very fruitful. Many proof
calculi to support veri cation of properties were proposedby Ehrig and Mahr
(1985), Maibaum et al. (1985)and by Szdas (1988)for equational, classicaland
temporal logics,respectively. On the semaric side,algebraicand abstract model
theorieswere deweloped by Ehrig and Mahr (1985) and by Goguenand Burstall
(1992). Perhaps due to this logical diversity, generallogics and frameworks
wereoutlined in the work of Mesegue(1990), Meseguerand Mart -Oliet (1995).
An approad basedon manipulating ADTs using abstraction was established

11
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by Ehrich (1982) attempting to make more tractable the processof software
dewelopmen, which in e ect could be horizortally and vertically decompmsed
due to the self-conained character of the manipulated descriptionsand to the
existenceof many abstraction levels, respectively.

Despite their successjt soon becameclear that the basic modularisation
units of the dewelopmen process,purely algebraictheories speci ed by ADTs
using somelogic, were not well suited to software dewvelopmen in general. To
be able to implemert ADTs using any imperative languageof proven practical
value, for instance, it would be necessaryfor them to embody sud notions as
state and assignmeh which could be not be captured explicitly in a purely alge-
braic manner. Moreover, the assumptionthat complexsystemscould always be
explainedin terms of (possibly divergen) functions de ned by algebraictheo-
ries put togetherpreverted an appropriate descriptionof concurrert and reactive
systems,where mutual interferencein intermediate computation stepsplays an
important role and termination is only a represetativ e of the classof evertual-
ity properties. Not all the proposedlogicsturned out to be suitable to handle
this latter aspect. It has been possible,howewer, to deal with theseissuesby
xing the logic as a temporal one (Pnueli 1977) and changing the structuring
notion from algebraicto temporal theories (Fiadeiro and Maibaum 1992),even
though there is not enoughevidencethat sud an approad would be usefulin
capturing all the problemsof practical interestthat may requirea computational
solution. The samehas also beennoted consideringthe notion of processand
the respective calculi asreported in our introductory chapter (Milner 1996).

In view of our interest in providing a tractable accourt for the design of
extensible systems,we may infer someimportant conclusionsfrom the above.
The experiencewith ADTs demonstratesthat it is paramourt to dewelop a pro-
found understanding of software dewelopmen and its underpinning notions to
avoid the risk of proposinga theory which cannotbe practically usedthroughout
the whole process.For this reason,we shall choosein the sequelmodularisation
units which are not asconcreteasprogramsnor asin exible asADTs, which will
be showvn adequateby their usefulnessn capturing real situations, but cannot
be guararteed to addressdirectly all the problemsthat may require compu-
tational treatment. Understandingtheir underlying logical systemin terms of
generallogic facilitates the assessmenof characteristics like expressibility and
composability, aswell asto move to a distinct setting in casea real problem is
found that cannot be properly treated by the chosenformalism.

The purposeof this chapter is multi-fold. First we outline an approad
which we beliewe providesa better explanationfor the processof software dewel-
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opmert. Wetry to identify which notions would allow usto treat the processin

a formal manner. Next, by providing formal de nitions for most of thesenotions
in the cortext of generallogic, we establishour own particular view of both logic
and software dewvelopmen, which keepsse\eral similarities with previously pro-
posedframeworks, but newerthelesscannot be fully described in terms of these
related works in the way they appear in the literature. We go one step further,

applying thesenotions in the de nition of many distinct logical systems,which

towards the end of the chapter are uni ed to form what can be regardedasthe

original foundational cortribution of our work. We critically reviewin this way

most of the badkground material required to understandthe families of systems
formalisedin the remainder of the thesis.

2.1 The Pro of-Theoretic Approac h

A rigorous and systematicapproad to the processof software developmer has
beenproposedby Maibaum and Turski (1984). Essetially, the approad relies
on the notions of theory and interpretation betweentheories much in the way
that ADT speci cations and abstraction are usedby Ehrich (1982) to organise
the software process.The main di erence betweentheseapproadesis that the
former emphasiseshe useof syntactical constructionsof somelogic whereasfor
ADTs no speci ¢ prescription is made. For that reason,the rst approad was
initially called logical.

The rationale for intro ducingthis distinction, which we ertirely agreewith,
isthat it appearsmore natural to explain software developmern in terms of theo-
riesand their syntactic interconnectionsthan it is usingsemartical constructions
like modelsand homomorphismsbetweenalgebrasasstudied by Ehrig and Mahr
(1985). Take as an examplea program implemening a particular speci cation.
From the point of view of a software engineer,it canbe madeclearhow to shov
in a systematic and direct manner from the sourceprogram using the adopted
proof calculusthat the program satis es all the constraints posedby the spec-
i cation and, indeed, implemerts it. On the other hand, to provide the same
kind of assuranceusing models, their structure must also be formally known a
priori and only after determining the classef modelsof both speci cation and
programis it possibleto shov an enbedding of the latter into the former. Some
advocatethat the whole processcanbejusti ed only on semanical grounds,but
by relying merely on models, usually abstract notions without much linguistic
structure, we also loosetraceability, the possibility of idertifying preciselyhow
distinct stagesof the dewelopmen processare (linguistically) related.
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Figure 2.1: Stepsof the dewelopmen process.

The logical approad is rigorously de ned in terms of theoriesand inter-
pretations betweentheories. As far as an ertity can be explained within a full
ertailment system,endaoved with a syntax and a notion of logical consequence,
it can be assignedo a theory, its set of consequencedn software developmert,
almost ewverything canbe explainedby a theory, from requiremens to programs,
although sud theories are not always formal. The motivation for using theo-
ries as modularisation units stems from their explanatory and self-conained
character. For instance, every ADT speci cation determinesa theory but the
converseis not necessarilytrue. Having these basic objects at hand, one may
want to argue about their relationshipsand a way to do sois through the use
of extensionsand translations. As sets, there is a natural notion of extension
between theories basedon cortainment. As linguistic constructions, they are
equipped with a canonicalrelation of translation basedon the renamingof sym-
bols in their languages. Two particular instancesof these are inclusions that
are consenative extensionsand translations which are interpretations between
theories. Consenative extensionsprevert the creation of new consequencefor
the original languagewithin the scope of the extendedtheory and interpreta-
tions presene the original consequenceso matter what their represetation is
in the new theory. Clearly, none of these notions are necessarybut they are
sometimesuseful.

The logical approad is systematicin that it prescribeshow the stagesof
the dewelopmen processshould be organised. Starting from an abstract theory,
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presumably generatedby somepreviously de ned speci cation, an interpreta-
tion of this original theory is chosento sene as a conserative extensionof a
more concreteresulting theory. Intuitiv ely, extension correspndsto addition
of detail while interpretation relatestwo distinct levels of abstraction. This is
illustrated in Figure 2.1. Note that the resulting object doesnot have to de ne
a program, becausemany steps may be required before this is achieved; the
speci cation is goingto be realisedin someother form due to a designdecision
or it isimpossibleto producea program from the currert theory. Also note that
the order in which extension (denoted by arrows with tails in the gure) and
interpretation (represemed by singlearrows) are computedshouldbe immaterial
and oncede ned it must always yield the sameresult had the other sequencef
operations beenchosen. The re nement stepsthus de ned (represened using
dotted arrows) canbe composedasoperationson theories. To support thesefea-
tures, the meta-theory of the adopted entailment systemis required to possess
someproperties (Maibaum et al. 1985).

There is no speci ¢ prescription in the logical approad asto which logical
systemshould be used, as soon asit supports the two main activities of rigor-
ousdewlopmen, designand implemertation, in a syntactic manner. Maibaum
et al. (1984) adoptedan in nitary consenrative extensionof classi@l rst-or der
logic. Actually, the work of Maibaum and Turski (1984) suggestedhat many
systemscould be used,onefor ead stageof the process.Here, sincewe are only
concernedwith designsconsideredn isolation, we may adopt a singlelogical sys-
tem, but it is worthwhile mertioning that there is a variety of them to be chosen
and ead one can make software dewelopmern more or lesspainful depending
on its features. For instance, it would appear intuitiv e to regard propositional
intuitionistic logic as a strong candidate, given its tight connectionswith the
typed -calculusvia the Curry-Howard isomorphism(Howard 1980), hencewith
computable functions. Howewer, as already mertioned, software developmernt
takes place as a gradual processof decreasingabstraction. It may well be the
casethat, in the middle of the process,the designerproducesa speci cation
intending to describe how a singleindividual or a commnunity of living ertities
behave. In sud situations, it would be quite restrictive to usean intuitionistic
logic. In cortrast, choosing proof-calculi without nitary presenation would
immediately prevert reasonableautomated support.

Concerning the basic building blocks of design, as soon as they de ne
theories, no prescription is made as well. A formal theory may be presened
by a nite set of axioms written in a languageallowed by the chosenlogical
system. The original theory may be recovered from these axioms through the
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Theory PA

sorts nat

constants O: nat

operations s:nat! nat+ :nat nat! nat :nat nat! nat
axioms

(0= s(x)) (1.1)
s(x) =s(y)! x=y (1.2)
X+ 0= X (1.3)
X+ s(y) = s(x+y) (1.4)
x 0=0 (1.5)
X s(y)=x y+x (1.6)
p[znO]A (8x pIx]! pIxns(x)]) ! 8x pIx] (1.7)
En

Figure 2.2: Classical rst-order theory of Peanoarithmetic (Krooger1990).

application of inferencerules. For the purposeof software design,the fact that

a theory cannot be nitely preseied should indicate that either the chosen
logical systemis not adequate,becauseit is impossibleto represeh a problem
of interest, or the problemis not to be captured, due to a decisionin the design
of the formalism. Therefore,it makessenseto restrict our attention to nitely

presenable theories and regard only their presemations as speci cations. It

is important to stressthat this requiremer is stronger than what is usually
understood in logic by the nite axiomatizability of a theory becausewe require
the axiomatisation to be supplied. Interestingly enough,the existenceof a nite

axiomatisation dependson the chosenlogical system. For example,in rst-or der
logic the axiomatisation of the theory of Peano arithmetic in Figure 2.2 is not
nite | (1.7) generatesan in nite setof axioms,onefor eat formulap| nor
thereis a nite one(Ryll-Nardzwski 1952). Neither of theseassertionsare true
if we considerfull second-order logic instead.

Initially , all the e ort wasdirectedtowards characterisinghow implemerta-
tion stepscould be compartmenalised dueto the useof consenative extensions
and interpretations betweentheories. A corntroversystated by Diaconnesciet al.
(1993) concerningthe use of an apparert sematic courterpart to the former
notion had to be spelled out by Veloso(1992). In essencethe claim was that
the software processcould be best descriked in terms of model expansionsbut,
asit turns out, due to the existenceof conserative non-expansie extensions,
model expansionsdo not characterisesomesynactic constructions of practical
interest. Despite these advances,it was only recerly that a cornvincing expla-
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nation of horizontal structuring was deweloped. Fiadeiro and Maibaum (1992)
shaved that conserative extensionscould not be seenas the basic medanism
for composing theories. In point of fact, to achieve composability in software
dewelopmen, the possibility of putting theory presemations together to form
complexsystemdescriptions,one should be preparedto usecreative extensions.
The useof sut extensionshasbeeniderti ed with the emergencef properties
of componerts when placedin complexcon gurations (Fiadeiro 1996).
Combining the assumptionsof the logical approad and the requiremen
of using only nite presenations of theories and proof calculi, it seemsmore
sensibleto considerthe approad above to be proof-theoretic. We stressin this
way the fundamertal importance of proof-theory as the support upon which
speci cations, interpretations and their veri cation, the coreobjectsin rigorous
design,are constructed. By this, we are not proposingto abandonmodel-theory;
this does not appear to be appropriate esgecially in using incomplete logics
or trying to achieve higher con dence in a design; newertheless,we seeproof-
theoretic constructionsasthe right objectsto dealwith in software dewvelopmer.
The approad descrited sofar hasbeenrecastin terms of categorytheory
by Fiadeiro and Maibaum (1996). Using this new formulation, let us show as
an asidethat this approad is useful to clarify the nature of someimportant
properties. The most desirableof theseappearsto be compositionality, which
relateshorizortal (design)and vertical (implemertation) structuring in the de-
velopmen process.Jones(1990) proposesthe following characterisation:

The needis for developmen methods which have the property that
implemertations which satisfy speci cations of sub-compnerts can
be composedso as to satisfy the speci cation of a system without
further proof. A compositional developmen method permits the ver-
i cation of adesignin terms of the speci cations of its sub-programs.
(Jones1990)

Clearly, compositionality is a relation betweenthe way speci cations and pro-
gramsare composedand veri ed. Usingthe terminology of Jones,it meansthat
if we have S° as a speci cation of a systemcomposedby two speci cations S;
and S, connectedthrough a third onecalled S and we implemert ead of them
respectively asP® Py, P, and P, we expect the existenceof a \unique" way of
seeingthe program P°as an implemertation of S°sud that it is a composition
of P; and P, connectedthrough P. This is depictedin Figure 2.3.

The point hereis that, in a compositional developmer processthe original
speci cations and their structuring are indeedpresened in ead implemertation
step. In categoricalterms, this property is captured when we sa that there is
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a functorial relation betweenthe categoriesof programsand speci cations. In
the gure, this relation can be represeted within the samediagram due to the
use of a retrieve functor Retr which maps ead program into a correspnding
speci cation. The functor plays the role of consenative extensionsas explained
above and the morphisms interpreting speci cations into retrieved programs
completean implemertation step. The notion of satisfaction of a speci cation
by a program is generalisedn this way. The fact that an implemertation step
is compositional, meaningthat is unique up to isomorphism,is automatically
ensuredwhenewer Retr is a functor (Fiadeiro and Maibaum 1996). All these
formal constructionsjustify the desirablereal situation in which it is possibleto
divide the complextask of verifying that an implemertation satis es a design
basedon the re nement of its componerts, asidenti ed by Jones.

Another interesting property called full abstaction is often mertioned in
the literature. Despite this fact, there does not seemto exist a consensual
de nition, although somesay that this notion is related to the absenceof im-
plemertation details in ead speci cation:

A (model-orierted) speci cation is biasal on an underlying set of
states. The modelis biased(with respectto a givensetof operations)
if there exist di erent elemeits of the set of stateswhich cannot be
distinguishedby any sequenceof operations. A model is su ciently

abstact providing it can be showvn to be free of bias. (Jones1990)

Moving away from model-orierted speci cations asin VDM and their specic
notions of state and operation, one may simply say that ead biased model
contains information which is uselesgor the particular speci cation in its current
level of abstraction. Speci cations in turn are saidto be fully abstiact wheneer
their models are not biased. Turski and Maibaum have an interesting point
of view concerningthe description above, which givesus enoughmotivation to
provide a rigorous accourt of that notion in a similar way to compositionality:

In full generality, the problem of a speci cation being without bias,
or ‘su ciently abstract' in Jones'terminology, is one that requires
a speci c cortext for its resolution. If a speci cation is considered
separately as an expressionof a linguistic level, without a history

(the speci cation for which the currernt one is an implemertation

or “program’) and without future (programsthat satisfy the currert

speci cation) the problemis not very meaningful. (Turski and
Maibaum 1987)

Considering this point of view, it appearsto be more appropriate to regard
full abstraction as the methodological property that distinct programs can be
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distinguished by somespeci cation. Many distinct ways of re ning the same
speci cation may exist and the information it corveys doesnot needto be to-

tally useful for all purposes,whereasit should be essehal for some. A typical

exampleis the systematicaddition of concretedetails aiming at a speci ¢ imple-

mertation platform. If a componert in a complexcon guration is only to read
data from a commonstoragein a shared-wariable mode of interaction, none of

its operationswill changethe sharedstate. Hence,speci cations taking this fea-
ture into account would appearto be implemenation biasedif seenin isolation.

Consideringthat the samecomponert is to be implemened in a shared-memory
platform, its speci cation and the adopted re nement method may well be re-

gardedas fully abstract. As in the caseof compositionality, we can provide a

categoricalcharacterisation of full abstraction asshaowvn in Figure 2.3.

The fact that a re nement method is fully abstract ensuresthe construc-
tion of implemertation stepswith enoughfreedomto distinguish through some
speci cation and realisation any pair of distinct programs. Supposethat the
re nement P; of a speci cation S; is supported by an interpretation between
theories ; and the samehappens,respectively, with S,, P, and i,. We sa that
the method partially captured by Retr is fully abstract if for any sud objects,
[Retr(P;)] and [Retr(P;)] are equivalert ( -isomorphic) whenewer P; and P,
are also related in this way by some . Note that this is in keepingwith the
view that a set of possiblespeci cations, determinedhereby a powersetfunctor
[], de nes the meaning of ead program'. Seenas above, full abstraction as
well as compositionality should be sough in any dewelopmen method, much
in the way that they are in de ning programming languagesemartics (Pnueli
1985b). They are not, howeer, properties of every method: both are captured
whenthere is a functorial relation betweenprogramsand speci cations (because
functors presene composition and isomorphisms),but only for somerestricted
methods relating sud categoriesof objects will they hold.

2.2 Logic in General

As illustrated in the previous section, category theory can play a certral role
in providing a formal and genericaccount of software dewelopmen and logic.
Instead of stressingthe intensional character of collections of objects asin set
theory, categoriesprovide an extensional perspective of some problem by fo-
cusing mainly on relationships between objects. In what follows, the notion of

1The application of the functor [] to speci cations can be de ned as [S] % fS§S°! Sg
and to the morphisms in the category as [i] 2f [domi]! [cod i] which is the caseif and only
if [domi] [codi]. The usual semartics functor is de ned as[]%f[] Retr.
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Spec Retr Prog
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Figure 2.3: Properties of the dewvelopmen process.

categoryis de ned asin the classicaltextb ook of Goldblatt (1979):
De nition 2.2.1 (Category) A categoryC consistsof:

a collectior? of ertities called objects, represeted asobjC;

a collection of entities called morphisms represeted as maphC;

two operations assigningead morphismf of marph C to objects domf
and cod f in obj C, called the domain and codomain of f, respectively.
Ead f in maph C with domf = aand codf = bis written asa ! b;

an operation called composition assigningead two morphismsf and
g of maph C having dom g = cod f to another morphism (g f) in
marph C, the composite of f and g, wheredom (g f) = domf and
cod (g f) = caod g, sud that for every f, g and h in maph C with
domg = codf and domh = cod g, the assaiativity axiom holds:

(ASS) h (g f)=(h g f;

2To make clear our choice of foundational notions concerningset theoretic structures, col-
lection here meansa set or a classindistinctly. Hereafter, we shall not worry about such
foundational issues.



2.2. Logic in General 21

an operation assigninga morphismid , in maph C, domid, = codid 5, =
a, to ead object a of obj C, the identity morphismof a, sud that for any
f and g in maph C with codf = a= domg, the identity axiomshold:

(ID) idy f=fandg idy=g.

We have already provided examplesof collectionsof objects, speci cations and
programs,that may possesgnoughstructure to determinecategorieswhenthey
are related through morphismsde ning interpretations betweentheir theories.
In Figure 2.3, we discussedsomecollective properties of these categorieswhen
connectedby a functor, a morphism of the category of categories(i.e., between
categories). As in that case,studying some particular problem, it is almost
always the casethat oneis seartiing for a universal property, characterisedby

the existenceof an object or morphism de ned up to isomorphismwhich enjoys
the particular property andis relatedto ead of the other similar membersof the

categoryin a uniqgue way. Compositionality, say, wasassaiated to the existence
of a uniqgue morphism relating complex speci cations to retrieved programs
that recordsthe way they were originally composed. As illustrated through that

gure, it is sometimesmore corveniert to study these properties in terms of
diagrams the correspnding diagrammatic preserations.

In orderto manipulate the basicbuilding blocks of the developmen process
asobjects in a category we rely on the de nition of their grammar in terms of
signatures usually nite setsof symbols, and on the existenceof a relation of
consequencéetweenseriencesand setsthereof de ned in terms of a language
allowed by the grammar. In this setting, it is possibleto considertheories as
objects, interpretations asmorphismsand discusstheir propertieswithin speci c
categoriesof theories. This theory-basedview of logic was initially proposedby
Fiadeiro and Sernadas(1988) in the form of -institutions, later revisited by
Meseguer(1990) as entailment systemsand nally generalisedby Fiadeiro and
Maibaum (1993). In their de nition below, we usethe notion of sequenceand
the following notation. Given a set S, we usethe superscript + in S™ denoting
the setof non-empty sequencesf S-elemens and in'S df S* [ f g cortaining
the empty sequence. In addition, we usethe subscriptf in in S, represeting
the setof nite sequencesnd 1l in S; standsfor the respective set of in nite
sequencesOf course,thesenotational corvertions may be conbined, in which
casethey have the expected meaning. We also write sequencdength aslen S
and sequenceoncatenationasR : T ors: R, s2 S, for sequence®, S, T.

De nition 2.2.2 (Entailmen t System) An entailment systemis a 5-tuple
= (Sig, L, E, G, *) where:
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Sig is a category of signatures
L is a set of logical symiwls;

E: Sig! Set is a forgetful functor. E assmiates ead signature in
obj Sig to its set of extra-logical symlols suc that E() \ L = f g;

G: Sig ! Set is a functor de ning a languagegrammar. G assiates
to ead signature in obj Sig a set of legal sentenes &( ) S* where
SdefE() [ L. Forp2 G(), p Si1:::Sh, Weextendthe de nition of E
asfollows: E(p) = fsjjsi 2 E() g;

" isafunction assaiating to ead1  in obj Sig a binary entailmentrelation
P (X)) (). is fully strongly (weakly) structural if and only
if forany [ o[ fp;agg G(), the following conditions are satis ed:

1. reexivity: ;° pforeweryp2 g

2. monotonicity: if ;° pand 1 >then ,° p;

3. transitivity: if ;° pforeweryp2 ,and [ 2 g 1 Q

4. strong (weak) structurality: for every : | °Oif 1 p, there
isanempty (nite) ©° G 9 suhthat G( )( [ °° o #(p),
where * (p) is de ned by pointwiseapplicationof : forl i lenp,

FE)=pifp2Lor #(p)= (p) otherwise. [

Roughly speaking, an erntailment system supports the manipulation of a fam-
ily of theories basedon three componerts: a category of signatures;a family
of languagesendoved with a common grammar and a classi cation of their
ground synbols; and a family of entailment or consequenceelations, one for
ead signature. Signaturesin generalhave someadditional structure, which can
be forgotten through the functor E yielding a set of extra-logical symbols. The
languagegrammar can only be de ned in terms of thesesynbols together with
logical symbols, sudh as connectiwes, variables and othersin L. This require-
mert cannot be found in (Fiadeiro and Sernadasl988,Meseguerl990,Fiadeiro
and Maibaum 1993) and is introduced here due to the assumptionthat ead
ertailment system has a closedvocabulary of symbols. That is, although dis-
tinct extra-logical symbols may appear in eat signature, despitethe fact that
the choice of their namesis immaterial becausethey can be renamedby sig-
nature morphisms, this assumptionrules out the introduction of new logical
constarts asthe systemis used. We would not be able to regard our approad
to logic as formal if new synbols and notation could be introduced at will, es-
pecially becauset would be impossibleto dewelop meta-logical results sud as
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the deduction theorem which depend on performing inductive argumerts over
the languagesof the system. Providing the required synbols explicitly also fa-
cilitates extending the de nition of erntailment systemsto deal with theoriesas
descriked below.

The properties of full entailment relations are usually found in any kind
of logical consequence.Re exivity sas that ewerything assumedis ertailed.
Monotonicity guararteesthat with more assumptionswe cannever concludeless
properties. Actually, we have favoured monotonicity in lieu of compactnessas
proposedby Fiadeiro and Sernadag1988), sincesomeof the temporal logicswe
shall study fail to guararteethat any property erntailed by a setof assumptionss
alsoertailed by a nite subsetthereof. Transitivity, sometimesconfusinglycalled
cut, capturesthe fact that using conclusionsas assumptionsdoesnot allow us
to concludemore properties. Note that ertailment relations do not capture the
relation of derivability betweensetsof setencesand single serienceswhenthey
are manipulated by inferencerules of a proof calculus. For classi@l rst-or der
logic, say, = capturesthe validities over the signature , which areindependert
from the proof calculusadopted.

Onenotion that ertailment relations cancaptureis the possibility of trans-
lating a validity over a signatureinto another one belongingto the languageof
a di erent signature. This is usefulwhenit is necessaryto proceedin a deriva-
tion within the cortext of a distinct presemation. For that e ect, Meseguer
(1990) proposed " -translation: that the translation of an entailed sertence is
ertailed by the translation of the set of senienceswhich supported the original
relationship, i.e., strong structurality. It turns out that, for somelogical systems
of practical interest which we shall study in the next chapter, this condition is
too strong. In a sensethe target enailment may be too weakto support the
original oneassud. That is why the existenceof a nite setof sertences © is
requiredin (4) sothat, adjoinedto the translation of the original set, ensureshe
ertailment of the translated sentence (Fiadeiro and Maibaum 1993). In most
cases, -translation is enoughand can be recovered by putting ° = f g.

Theoriesare de ned as follows. Given an ertailment system(Sig, L, E,
G, ') and a set of sertences G() over in objSig, the set of theorems
Th () «ffp2 G() j ° pgis calledthe theory of over . It is thusthe
closur of underthe binary relation © . Theoriesand setinclusion determine
a categoryTh .

Using the de nition of theory, we canlift a category of signaturesSig to
a category of logical theoriesTheo asfollows. For eatcr  in obj Sig, Th ()
in obj Theo if and only if fp2 &) jfg~ pg. Moreover, for ead Sig-
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morphism : !  C%andeah fTh () ;Th o 9g cortained in obj Theo,
there is a morphism : Th () ! Th o 9 in maph Theo if and only if
f *(P2& %p2Th () g O Th o 9, where # and °© areasin
De nition 2.2.2. Wesay that atheory morphism :Th () ! Th o 9 having

: ! 0 as underlying signature morphism is an interpretation between
theorles wheneerf #(p)2 G( %p2Th () g Th o 9. Furthermore, is
said to be faithful ® if and only if, for every p2 G(), ©° #(p) if and only
if ~ p. Wecannow de ne what is meart by a theory presentation

De nition 2.2.3 (Theory Presentation) Given an ertailment system(Sig,
L, E, G, ), atheory presentationisapair = (, ) where:

in obj Sig is a signature;
G() isa nite setof extra-logical axioms ]

As we have already hinted, a wealer notion is that of a nitely axiomatizable
theory: Th () is nitely axiomatizableif and only if there is a theory presen-
tation ( ; 9 suhthat °° pwheneerp2 Th () andonly then. The
lifting of Sig to Theo naturally extendsto categoriesof presemations Pres and
nitely axiomatizabletheoriesFinAx by requiring respectively that  be nite
or Th () be nitely axiomatizablefor eat G(). In practice, we often
work with the respective sub-categoriesof Th .

A formal accoun to logic would not be accuratewithout treating the no-
tions of model and satisfaction. The theory of institutions proposedby Goguen
and Burstall (1992) can be usedto deal with thesesemarnic notions in an ab-
stract manner:

De nition  2.2.4 (Institution)  An institution is a 4-tuple (Sig, G, M od, F)
where:

Sig is a category of signatures;
G:Sig! Set isafunctor de ning the languagegrammar;

Mod : Sig ! CAT® is a functor assaiating to eahr  in obj Sig a
categoryMod() = Mod of maodelsof ;

F is a function assaiating to ead in obj Sig a binary satisfaction
relatonF  objMod G&(). Forany : ! C%p2G() and %in
objMod o, °F o *(p)i Mod )( YF p O

SIF :( ;) ! ( ; 9isafaithful morphism, then it capturesthe consenative extension
Th () Th (9.
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In institutions, the category of signaturesand the grammar functor are similar
to the componerts of an entailment system, but the requiremen of vocabulary
closureis absen becausethis neither can be a generalmodel-theoretic property
nor doesit appear in the original de nition of institution. Actually, it would
falsify any Upward Skolem-Lewenheim theorem (seevan Dalen (1994) for an
example). The functor M od assaiates signaturesto categoriesof models be-
longing to obj CAT®, the dual to the category of categoriesCAT with all
morphismsreversed. The function | is analogousto ~ and ead satisfactionre-
lation respectsthe sematic courterpart to strong-structurality which requires
that truth be invariant under change of notation, the satisfaction condition.
Whene\er this semartic condition is too strong to be obtained, e.g. in weakly
structural ertailment systems,we shall indicate how it can be approximated.

The de nition of the functor M od and the function E can be extendedto
the categoriesof theoriesinduced by the signaturesof a speci ¢ full erntailment
system. For instance,Mod : Th ! Cat° assaiates ead theory Th () to
a category of models Mo dty, (y , where in obj Mody, (y if and only if
we have E pforewryp2 Th (). The semaiic consequenceelation
F P (&) G() isdenedas E pifandonlyif FE p wheneer

F gforeweryg2 , forewry inobjMod . Fora xed ,wewrite E p.

This relation generatesa semaiic notion of theory ThF() complemeting
Th ().

A logic is de ned by putting together a full ertailment systemand an
institution sothat they sharethe samecategory of signatures,but the closure
of the syrtactic grammar is semarically forgotten, obeying the following:

De nition  2.2.5 (Logic) A logicis a 9-tuple (Sig, L, E, G, , G, Mod, F,
) where:

(Sig, L, E, G, ") is afull ertailment system;
(Sig, G-, Mod, F) is an institution;
:G ) G isanatural isomorphism;

sud that the soundnesgondition holds: forany 2 obj Sig andead [ fpg
G (),  pimpliesf (@jg2 g9F (p). If, in addition, the corverse
of this condition holds, then the logic is said to be complete ]

We say that an entailment relation is compact if and only if for every , P
implies the existenceof a nite ° sudh that °° p. The sameappliesto
sematic consequenceelations. Sometimes,due to the failure of compactness,
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completenesgasde ned above cannotbe obtained. In this sensepur de nition is
of a strong notion occasionallycalled adequacy It may be usefulto study weak
and medium completenessotions where is consideredto be always empty
and nite, respectively. It also makessenseto talk about relative soundnesor
completenessotions, wherethe erntailment and satisfactionrelations of distinct
logics are related accordingto the conditions in the de nition above. The dif-
ferencesbetweenG and G- as well as betweenTh and Th™ for eah in
obj Sig are normally ignored for the sake of simplicity.

As discussedn the previoussection,we considerthe notion of proof calcu-
lus to be the basisupon which our approad to software dewvelopmen is de ned.
Eadch proof calculus provides a systematic method, de ned in terms of the no-
tions of axiom sthemaand inferencerule, for determining whetheror not a single
sentenceis a consequencef a set of sertences. It alsoappearsto be reasonable
to say that, when an erntailment systemis assaiated to a proof calculus, this
last structure generatesead theory and supports their manipulation, in that
the calculus provides rigorous tools for classifyingtheory morphismsand nd-
ing derived properties. Someattempts to capture the notion of proof calculus
in genericform have already appearedin the literature. Meseguer(1990), to
abstract away the structure of ead derivation through categorytheory, useda
generalisedformal construction called multi-category. A distinct approad was
adopted by Harper et al. (1994), who studied the represetation of proof calculi
usingjudgemert rules of a particular type theory. Here, sincewe do not want to
commit oursehesto any additional formal apparatus, a set-theoretic de nition
is proposedbelow:

De nition  2.2.6 (Pro of calculus) A proof-calculusis an 8-tuple (Sig, L, E,
G, ', Ax, |, Pr) where:

(Sig, L, E, G, ") is an entailment system;

Ax : Sig ! Set is a functor assigningead signature in obj Sig to a set
of logical axioms Ax() G() sudthat p2 Ax() impliesfg  p.
Ax() is generatedby a nite set of axiom schemaswritten in terms of
schematicvariablesranging over G() and logical synbolsin L;

I" is a function asseiating eath in obj Sig to a binary derivability
relation I’ P* (P (&) G()) G() sudthat ~ p wheneer
(;p21" and =1fg9 (;9 2 g. Ead pisaconclusion and
are setsof premisesand of assumptionsto be dischaged respectively. |
is generatedby the application of a nite set of inference rules written in
terms of sthematic variablesand logical synbols;
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Pr is a function asseiating eadr inobjSigand [ fpg G() toa
setPr ( ;p) of tree-structured derivations of a conclusionp from a set of
assumptionsor hyptheses. Pr ( ;p) is the smallestset of derivations
organisedin proof stepsaccordingto the following inductive scheme:

1.ifp2 then(fg;p)2 Pr (fpg;p) (assertionof an assumption);
2.if p2 Ax() then(fg;p) 2 Pr (f g;p) (useof an axiom schema);

3.if =1f(i;m)iil fpmg G() g (a setof derivation contexts), D =
f(di;p) 2 Pr (i [ iip)i i ;9c2 ¢ = (i;p)g (a setof
derivations) and I© pthen (D;p) 2 Pr ( ;p) (application of an
inferencerule)?;

sud that the faithfulness condition is postulated: Pr ( ;p) 6 f g and
8D;p2Pr (;p (D=fg! =fgi ~ p O

A proof of p over a presetiation (, ) is a derivation of p with  asthe set
of hypotheses.We say that p is derivablefrom in this case. A generic proof
of p is a derivation of p with the empty set of hypotheses,in which casep is
said to be provable A proof calculusis said to be formal only if derivations,
which have nite length, are composedsolely by the application of inference
rules taking a nite number of premises. Otherwise, the calculusis considered
to be semi-formal, di ering from informal structuresjust becauseof its rigorous,
though not nitary , de nition. An exampleof a semi-formalcalculusis that of
I -logic, de ned by Chang and Keisler (1977) as an extensionof classical rst-
order natural deductionwith anin nitary inferencerule which takesan in nite
number of instancesof a formula as premises,onefor ead natural number, and
allows the conclusionof its universal generalisationas a quarti ed serence.
The de nition of Pr deseresfurther attention. A setof application exam-
plesis provided in Figure 2.4 to shaw that Pr is generalenoughto capture the
usual proof calculus styles. As stated above, Pr ( ;p) is a set of derivations
of a conclusionfrom a set of assumptions. We use this set to de ne a family
of entailment relations by postulating a faithfulness condition. Note that we
disregardsingle assertionsof assumptionsas generatingenailments to prevent
them from always being re ective. We could have alsoassumedhe existenceof
a set of logical labels and consideredlabelled sertencesand proof steps. That

41t is worthwhile mentioning that we considerthe di erent ways of dealingwith assumptions
using inference rules as the only essetial distinction betweenthe usual proof calculi styles:
while Hilbert-style calculi do not allow us to discharge assumptionsusing inferencerules and
prioritise in this way axiom schemas,natural deduction rules discharge assumptionsexplicitly
and segquent calculi rules internalise this treatment.
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Hilbert style:
1. s5:p~(q_r)$ (prg_(p~r) DIST-A O (see App endix-I)
2. (DEsH):pr(_r)! (Prg_(p~r) IFF-E 1 (see App endix-I)

This annotated genericproof is justied by the fact that s§ 2 Ax() (rst casein
De nition 2.2.6) and that (D%;s3) 2 Pr (f g;s§) (secondcasein the de nition),
allowed by the schemaand rule stated in Appendix I. Note that D§ = f(f g;s5)g.

Natural deduction:

P @l
(D818 :p  shoild
sp1 [P (9_1)] . (D81:ish2) :p" d |
(DS4is84) ta_r (D5,:83,) :(PrA)_ (P~ 1)  (DSaisha) E
(D5:s3) : (p" @) _ (p" 1) | )
(D% :pr(@_r) ! (pra)_(phr)

where (Dgﬁ; Sg:3) = (Dg:zi 33:2)'

The proof aboveis justi ed in a similar way to the Hilb ert-style case. The applica-
tion of inferencerules, which generateead Dj; , is permitted by the natural deduc-
tion rules. The novelty in this caseis the discharge of assumptions. For example,
note that (DE:Z;SQ:Z) 2 Pr (f ngl;sgﬁg; 53:2)’ (Dgzs;sgzs) 2 Pr (f Sg:Z;SE%g; 53:3)'
Therefore,dueto the _E rule, f(fg;s3.1); (fsR,0;s3.,); (fs2,0;s85)g"  sh andthen
(Db;Sg) 2 Pr (fSPl:lg; 32), becausesl2—1):1 = Sl6:3):1 = 52:2'

Squent calculus. We assumethe existenceof a logical symbol ) in ead sertence.

S(7::l:p) p

W L

(Dg:l;sg:l) : p;Q) p (Dg:z;sg:z)

"R

S&1:P) P (DE1:S82) 1 p:q) (p” 0)
W R R
(D§.1:83.1) :P) Pig_r (D§.2:832) 1 Q) (P Q) _(p™r) (D.3:54:3)
AL L
(D§.1:851) :p™(a_r)) pia_r (D§2:852) :pa_tr) (P~ _(p~r)

CuUT

(D3:s3) :ph(a_r)) (pha)_(p"r) o
(Df:sf) ) pr(a_r)! (pha_(p~rT)

where (D§.3;S5:3) = (DZ:2;542) and (D§;s72) = (Dg.1;S7.4)-

Disregardingthe treatment of assumptions,this exampleis similar to the preceding
one. The terminal sertencesin sub-derivations, e.g. s5.1 and s7.1, belongto Ax ().
Theseare generatedby a standard schemain sequen calculi, p) p, p2 G().

Figure 2.4: Example of distinct proof calculi styles.
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would be to recordthe inferencerule justifying ead stepin a derivation, which
is sometimesuseful when there are marny di erent ways to derive a conclusion
from the sameset of premisesand alsoto provide rigorouscortrol over discharg-
ing of assumptionsin natural deduction like calculi. We prefer to avoid this
additional complexity for the sake of simplicity. Furthermore, it is possibleto
relax the faithfulness condition to introduce new soundnessand completeness
relationshipsasproposedby Avron (1991),this time betweenertailment system
and proof calculus. We considerthe equivalenceabove to be essetial because
the entailment and satisfactionrelations of a logic are already related according
to theseconditions. Giunchiglia and Sera ni (1994) study derivability relations
where premisesand conclusionbelongto distinct logical systems.An extension
of our de nitions towards this direction is clearly subject for further work.

It is alsoimportant to mertion that, for a givensignature , I’ doesnot
inherit the properties of the underlying ertailment relation. It only captures
particular applications of inferencerules of the proof calculus,for which re ex-
ivity, say, would meanthat for eat premisethere is a rule which allows us to
repeat sud a sertencein the subsequen proof step, a requiremen which is not
acceptablein generaf. Seenasa binary relation, Pr inherits all the properties
of © . By abuseof notation, p2 Ax() isnormally written asl” p. Moreover,
wewrite [© porl ( .y pwheneer Pr ( ;p)isnot empty.

In the remainderof the chapter, we will be interestedin providing presen-
tations for proof calculi of someinteresting logical systems

De nition 2.2.7 (Logical System) A logical systemis a 12-tuple (Sig, L, E,

G, ,G,Mod F, ,Ax,|,Pr)where:
(Sig,L,E, G, ,G,Mod, F, )isalogic;
(Sig, L, E, G, ", Ax, ", Pr) is a proof calculus; 0

A logical systemis consideredto be e ective if provability is decidablefor the
underlying proof calculus, meaning that it is possibleto write an algorithm
which decideswhether or not there is a genericproof for ead sertence.

An inferencerule I° P, andP written in terms of schematic variables
andlogical symbols, is consideredo be derivablein alogical systemS if and only
if for every pair of instances( , p) of (, P), Pr ( ;p)isnot empty. The same
rule is said to be admissiblein S if and only if F p wheneer E . These
de nitions are standard in the literature (Rybakov 1997). Clearly, derivable
rules are admissibleby de nition. Derived rules make the application of a proof

5But seeFriedman and Sheard (1995) for a \pro of calculus” with sud rule.



30 Chapter 2. Proof Theory and Software Developmernt

Logical
Systems
Qq
Qq
+ Q
Calculi
? ) ?
Entailment Institutions

Systems

Figure 2.5: A taxonomny of logical structures.

calculus easierin practice while the incorporation of an admissiblerule results
in a more powerful proof theory. We dealwith both kinds of rulesin the sequel.

At this point, we should remind the readerthat we are not attempting to
proposean original formulation of generallogic. Rather, we have madean e ort
to establishpractical foundationsin order to support a rigorousinvestigation of
mary di erent logical systemswhich areto beintroduced. Providing de nitions
for generallogical structures interconnectedas depicted in Figure 2.5 allows us
to study meta-logicalpropertiesin a logic independert manner,to determineto
what extert | basedon what assumptions| generalproperties hold and to
transport theseresults elsewherevheneer possibleand necessary

2.3 Classical Prop ositional Logic

From this sectiononwards, our purposewill be to de ne alogical systemto sup-
port the designof extensiblesystems. We shall de ne somedistinct ertailment
systemsin terms of their respective Hilb ert-style proof calculi and examinehow
they are connectedto eat other and usedin isolation, postponing the de nition

of the assaiated model-theoretic notions until the nal sections,after having
de ned the whole proof-theoretic structure. We begin by looking at classial
propositional logic. Sincethis logic is quite well-understood (a comprehensie
study is deweloped by van Dalen (1994)), we take advantage of this fact to illus-
trate how a proof-theoretic approad leadsus to de ne an ertailment system.
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De nition 2.3.1 (Classical Prop ositional Logic) The ertailment systemof
classi@l propositional logic, CPL for short, is de ned asfollows:

Sig®"" = FinSet (i.e., Sig°"* isisomorphicto the categoryof nite sets);
Lertder £ 51 5 ()g;

E°"t = idggce. Foreadr in obj Sig®"", eah elemen of E°*-() s
called a proposition symtiwol;

Foread in objSig°"", G°*t() is asetof propositionsde ned by Pc"*
asfollows, provided that p2 E°P-():
PCPL = pJ PCPL J (PCPL | PCPL)
We shall ignore super uous parerthesesin propositions and adopt the
usual precedencecornvertions. We also usethe following abbreviationsfor
eah fp;agg G"H():
(D1->) > defp!l p;
(D2-7?) ? def:>
(D3-OR) p_q¥'(:p! 0
(D4-AND)  p” q&f: (p! o)
(D5-IFF) p$ q&f(p! g™ (q! p for:((p! a! :(al p)I;

Foread in objSig°"", the entailment relation ~ °** is generatedby the
following proof calculus,provided that fp;q;rg G°°-() ©:

(AL-) I"“Ptp! (g! p) (weakening;
(A2-) <" (p! (! ) ((p!' 9! (p! r)) (distribution);

(A3-N) " (Cp! 9! (al! p);
(R1-MP) fp;p! qgl” “"" g (modus ponensor detachmeny. []

CPL may alsobe seenasa non-conserative extensionof minimal intuitionistic
logic, which is generatedby sthemasAl-1 , A2-I andrule R1-MP only.

Our (partial) de nition of CPL is slightly unusual. van Dalen (1994)
usesa unary logical connective ? denoting falsehad, which is admittedly not
essetial. Another important distinction is in relation to the propositional proof
calculusadoptedby Hilbert and Ackermann(1928),wherean additional uniform
substitution rule is proposed. They mertion in that work:

61t is worthwhile recalling that Hilb ert-style calculi do not have inference rules whereby
assumptionscan be discharged. This meansthat asin De nition 2.2.6is empty for R1-MP .
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We may substitute for a sertential variable any sertential conbina-
tion provided that the substitution is madewhene\er that serential
variable occurs. (Hilb ert and Ackermann 1928)

Sincewe useschematicvariableslike fp;g;rg G°°-() in our axiomatisation,
substitution would be super uous here. Our choice also makesrepla@ment by
equivalentsa derivable rule, meaning that it is possible,basedon the axiom
sthemasand inferencerules of our proof calculus, to shov that an additional
rule replacing formulas by logically equivalent onesdoesnot allow us to derive
more properties than the original axiomatisation. The statemert of this rule,
which is often usefulin constructing derivations, appearsin Appendix I.

In order to ensurethat the ertailment systemabove is really well-de ned,
it is necessanto shav that it complieswith the genericde nition provided in
the previous section. We have to prove that propositional signaturesand the
respective morphismsindeeddeterminea category We dewelop below the proof
of this straightforward result just asa matter of completenessin fact, we showv
in addition that the categoryof nite setshasthe desirableproperty of being
nitely co-complete which has beenidentied by Goguenand Burstall (1992)
asa necessarycondition to support speci cation in the large:

Theorem 2.3.2 (Category of Finite Sets) The collectionsof nite setsand
set-\aluated functions de ne a categoryFinSet . In addition, FinSet hasboth
initial elementand pushouts being in this way nitely co-complete

Proof: Given FinSet -morphismsf and g, X " Y andy 1° Z, the function
(g f)(x)<efg(f (x)), x 2 X, is the composition of f and g. Consideringalsoa
FinSet -morphismh, Z " W, the following diagram commnutes (so ASS holds):

Moreover, for ead X in obj FinSet , there is an X X X sud that 8x 2 X
idx (x) = X, the idertity function over X. Given FinSet -morphismsf and g,
Y !" X and X !° Z, the following diagram comnutes (so ID holds):
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X
6@
idy f _@@g id x
id x id x @
?
Y — X %Z
f g

The assaiative and identit y axiomsobtain, shaving that FinSet is a category

We know that f g belongsto obj FinSet . For every X in obj FinSet ,
thereis a FinSet -morphismf , f g "X ,Ssudhthat 8y 2 f g 9'x 2 X f(y) = x,
becausethis formula characterising empty functions holds vacuously Suppose
that thereis anothergin maph FinSet , f g!° X and8y 2 f g 9'x 2 X g(y) =
X. The extensionalde nition of function equality says that for eat pair A [ B,
f = gifandonlyif 8x 2 A f(x) = g(x), but for A = f g this property holds
vacuously This ensureghat f = g, which meansthat there is exactly onearrow
from f g to any other set. Thus, f g is the initial object of FinSet .

Assumegiventhe FinSet -objects X, Y, Z and the FinSet -morphismsf ,
0o, X ° v andX  Z. ConstructW in obj FinSet , f; andg; in maph FinSet ,
Y I* W andZ ® W, sothat;

8x2 X (f1 fo)(x) = (g1 9o)(X) (2.3.1)
BW2W 9y2Y (fuly)=w)_922Z (gu(2) =w) (2.3.2)

The setW = Y  Z is calledthe amalgamatd sumof Y and Z (after possible
renaming). For ead triple P = (W%f,; ), WCin obj FinSet and FinSet -
morphismsf ,, g with Y 2 W2andZ ® W2 sud that condition (2.3.1) obtains
when f, and g, are substituted by f, and g,, there is a h in maph FinSet ,
W I" WO suchthat f,=h fyandg, = h g. This function is de ned as:

o F20) 1) = X
%(y) if au(y) = x
Indeed, h is a well-de ned function, due to condition (2.3.2), which guarartees
that every elemen of the domain W of h hasan imagein W and to the fact
that f,(y) = h(x) = g2(y) whenewer f1(y) = x = gi(y), which ensuresthat the
image of h is uniquely determined.

If there is another h®in maph FinSet , W " wo obeying the samecondi-
tions, thenh® f; = h fyandh® g, = h g;. In otherterms,8y 2 Y (h° f{)(y) =
(h f)(y)and8z22Z (h° @)(2) = (h )(z). Becauseof the de nition of
W, 8w 2 W hqw) = h(w). Due to extensionality, h®= h. So, h is the unique
function up to isomorphismmaking the following diagram commnute (the inner
diamond is called a pushoutdiagram):
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Y
f é(XfxxXx
0 @é@ XXXxf%x
h XX
X W-------->= W60
@
95@@@ (o/] %
Z

Using the fact that a categorywith initial elemen (e.g. f g) and pushouts
eg. Y T*W ® Zfory ™ X  Z) has nite colimits for all nite dia-
grams (Barr and Wells 1990), we concludethat FinSet is nitely co-complete.

B (FinSet Category)

The importance of the proof above is more pragmatic than theoretical.
Becausethe remainder of the thesis is only concernedwith nite sets possi-
bly having someadditional structure to sere as signaturesand with structure-
preserving signature morphisms, we can reuse this result to showv that ead
particular categoryof signaturesis nitely co-complete.In practice, this means
that hereinit will always be possibleto take two signaturesand compute their
composition by idertifying the extra-logical synbols they share.

To ensurethat the de nition of CPL yields a full ertailment system, it
remainsto be showvn that the designatedproperties of ead ertailment relation
are supported by the chosenproof calculus. We shaw that for any fp;q;rg
G°P-() thereis a proof which complieswith our axiomatisation and enables
us to obtain sud properties for eadn  in obj Sig. This is veri ed as follows,
where (1), (2) and (3) refer to the casesn the de nition of Pr”:

re exivit y: From (1) we caninfer that (f g;p) 2 Pr (fpg;p). Moreover, the
genericproof of REFL :p! pstatedin Appendix| allows usto sa that

"Together with R1-MP , the following axiomatisation of a linear implicative calculus ex-
tracted from (Gabbay and de Queiroz 1992) exempli es Hilb ert-style preserations which do
not generatefull entailment systems:

(REFL) p! p(re exivit y);

(PERM) (p! (q! ) ! (gq! (p! r)) (permutation);
(LTRAN) (p! ! ((r!' p! (r! q) (left-transitivit y);
(RTRAN) (p! ! ((g! r)! (p! r)) (right-transitivit y).

Namely, if weread! as , it is easyto recognisea fragment of linear logic (Girard 1987),
which lacks monotonicity. By analysing this axiomatisation, we concludethat the usual de -
nition of derivations in Hilb ert-style calculi, possibly disconnectedlinearly ordered sequences
of steps, is too strong: every entailment relation so de ned is automatically made re exiv e
and monotonic. That is why connectednesss required in (3) and the entailments generated
by derivations corntaining a single assertionare disregardedby our de nition. In this way, only
the proposedcalculus can help us to prove the properties required in full entailment systems.
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there exists (D;p! p) 2 Pr (fg,p! p), basedon (2). Applying R1-
MP in (3) usingthe previousseriencesaspremiseswe concludethat there
is a non-empty D such that (D%p) 2 Pr (fpg;p) and, by faithfulness,
that * °"" isre exive;

monotonicit y: The de nition of monotonicity allows us to assumethat (i)
thereis (D;p) 2 Pr ( 1;p), due to the faithfulness condition, and (ii)
1 2. Choosingany q2 ,, (1) renders(iii) (fg;q) 2 Pr (fgg;Qq).
Wealsohave (f g;p! (q! p) 2 Pr (fg;p! (q! p)), dueto the use
of A1-1 in (2). Using this fact to support two consecutie applications
of R1-MP in (3), rst together with (i) and later with (iii), we can infer
that ;[ fgg~ p dueto faithfulness. After iterating this processfor all
the other elemetts of 5, not in 4, taking the outcome of ead previous
step asthe input, we concludethat ~ ©*" is monotonic becauseof (ii);

transitivit y: The de nition of transitivit y allows us to assumethat (i) there
is(Di;p) 2 Pr ( 1;p) foreah p2 ,, and (ii) thereisd = (D2;q) 2
Pr ( 1[ 2;09), both dueto faithfulness. We show that there is a d° =
(D%q), d 2 Pr ( 1;0), obtained from d by recursion. If d = (f g;q)
sucd that g2 5, useAl-l asin the caseof re exivit y to shav that d°=
(Dé;q) 2 Pr ( ;9 basedon(i). Ifd= (f g;g) sudhthat g2 Ax() [ 1,
d°=d. If d= (f(D:;r);(Dri g1 ! 0)g; d), apply the sameprocessto D,
D 4 and obtain the following d°= (f(D?;r);(D?, 4;r! 0)g;q):

1.r D,
2.r! g Dri g
.(r! g! ((r' )t (r! Q) LTRAN

4. (r! r)! (r!' g R1-MP 2,3
S5.rt r REFL
6. r! q R1-MP 5,4
7. q R1-MP 1,6

where REFL and LTRAN are veri ed basedon the axiomatisation of
CPL. Note that this processis applicableto extensionsof CPL wherein
none of the above is the case. For any other d = (D};q), apply the same
processto ead d° 2 Dé and construct (Déo;q) accordingly Becausethe
rst casein the de nition of Pr isthe only way of introducing hypotheses
in a derivation and we have eliminated all the seriencesof 5 from d in

d® we concludethat d°2 Pr ( 1;q). By faithfulness,” °°* is transitive;
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strong-structuralit y: Assumethat =~ p. Foreah ! %in marph Sig,
we prove that, if d = (D;p) 2 Pr ( ;p) thend®= ( (D); *(p))j, d 2
Pr o G( )(), #(p), for # asin De nition 2.2.2. Hence,applying the
faithfulness condition twice, we obtain G( )() ~ o *#(p), which means
that ~ ©P*- is strongly structural. Assumed given. Due to the minimality
of Pr ( ;p), d correspndsto one of the following cases:

d= (fgp)andp2 . Inthiscased’= (f g; #(p)), d2 Pr o(G( )(),
#(p)) (i.e., assertionsof assumptionsare translated into similar as-
sertions);

d= (fg;p) andp 2 Ax(). The axiomatisation of CPL allowsusto
sa, providing fs;t;ug G°P-(), that #(p) is either:
1. #(s)! (#(@)! #(9) if p2 Ax() becauseof Al-l;
2.(*F@E 0 (FO L )t (Pt )t (F(s) !
#(u)) if p2 Ax() becauseof A2-1 ;
3.¢ F(s)! - F@) ! (*F@)! #(s) if p2 Ax() becauseof
A3-N ;
In any case, * (p) 2 Ax( 9. So,d’= (fg; #(p)),d2 Pr oG( )(),
#(p)) (i.e., instancesof schemasare translated into axioms);

d = (D;p) sudh that D 6 fg. Apply the sameprocessabove to
eath d 2 D and obtain (D). Due to the axiomatisation of CPL,
(D) must have the form f(D «; *(@);(D # (g #@): " (9 !
#(p))g. By applying R1-MP in (3) we obtain d%def ( (D); #(p)) 2
Pr o&( )(), *(p) (i.e., applications of inferencerules are trans-

lated accordingly).

The veri cation of the result above wasnot dewelopedin the mosteconom-
ical way. It wasdevisedassud not only to spot a setof provabletheoremswhich
ensurethe properties of full ertailment systems,but alsoto shedsomelight on
what requiresattention in deweloping similar results for other systems. Re ex-
ivity, monotonicity and transitivity do not demand all the axiom shemas of
CPL and are still valid consideringsomewealer axiomatisations. On the other
hand, if the sthemasand rules of CPL are stated basedon the grammar of an
extendedHilb ert-style calculus, the properties above do not needto be exam-
ined againbecauseheir veri cation doesnot dependon the additional structure
of the proof calculus. We adopt this rationale to arguethat all the ertailment
systemsdescribed in the sequelare re exive, monotonic and transitive.

The caseof structurality is more complex. To prove that CPL is strongly
structural, we had to examineall the applicationsof inferencerulesand instances
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of axiom sdhemasshawing that they are translated into similar constructions
basedon the target signature of eady morphism. This guararteesthat all the
theoremsof eadh CPL presetation are translated by ead morphism into the-
oremsof its target preseration. Even after having veri ed this result for the
axiomatisation of CP L, we are still obligedto prove the samefor the remaining
sthemasand rules of eat proof calculus wherein this axiomatisation appears
enmbedded. To simplify this task, it is enoughto shav that no schemaor rule
strictly dependson the symbols existing in the underlying signature. To un-
derstand why, note that the only possibledistinction betweenthe theoriesof a
presemation and of its translation along a morphism may appear becausesome
theoremsare generatedby sdhiemasor rules stated in terms of the setof symbols
in the original signature, which canbe expandedby a morphism. Thus, the cor-
responding theoremsin the theory of the target presemation would not exist.
We shall study a weakly structural ertailment systemin the next chapter.

Eventhough classicalpropositional logic is not highly expressie, the func-
tionality of real systemscan already be represeted in speci cations to some
extert. Supposethat CPL isto be appliedin the designof a replacemen for a
medianical systempreseily in useby a supermarket. The main purposeof the
systemis to prevent trolleys from being stolen. To be allowed to usea trolley,
eat customeris requiredto leave a special purposeidenti cation card asa de-
posit in a safeso asto releasethe attached trolley immediately. As soon as a
trolley is locked againto the system,the card can be collected.

We adopt here a designdiscipline prescribing the represetation of eah
object in a problem domain as a separatetheory presertation, following in this
way Fiadeiro and Maibaum (1992). In the supermarket system, it is easyto
idertify these objects as the locker, the safeand the medanical device which
obligesthe rst two objects to behave in a coordinated manner. In Figure 2.6,
eadt of theseobjectsis descriled by a speci cation consistingof a signatureand a
setof propositional axioms. The propositional symbolsin ead signaturedenote
both the state and the instantaneousewerts occurring in the system. Axioms
de ne how theseentities are related to eat other. For instance, accordingto
(4.1), which constrains the occurrenceof an action accordingto an attribute
value, only when a trolley is currertly locked to the systemcanit be released.
Another exampleis provided by (2.1), saying that the occurrenceof actions
push and pull is mutually exclusive. This separationof signature symbols into
attributes and actionsis regardedin this chapter just assyntactic sugarto make
speci cations morereadable,meaningthat at this point thesefamiliesof symbols
do not have any distinguishedlogical role.
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Specication Device

actions push; pull

axioms

push! : pull (2.1)
End

Specication LockerCPL

attributes  trolley_in

actions releaselock

axioms

release! troley_in 4.1
release! : lock 4.2)
End

Specication SafeCPL
attributes card_in

actions deposit; collect
axioms
collect!
deposit !
End

(3.1)
(3.2)

card_in
: collect

Specication SystemCPL
actions use return

attributes trolley_in; card_in
axioms

use! : return

use! trolley.in

return ! card.in

End

(5.1)
(5.2)
(5.3)

Figure 2.6: Speci cation of the supermarket systemin CPL.

(a)
SystemCPL

S
@

LockerCPL SafeCPL

#
) 2
@

Device

(b)  LockerCPL SafeCPL
releasé———— use ——— deposit
lock——"— return ——— collect
trolley _in 1 trolley _in
card_in 42| card_in

LockerCPL Device SafeCPL
release | pushl deposit
lock | pull | collect

Figure 2.7: Con guration of the supermarket systemin CPL.
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We use speci cation morphismsto connectdistinct modular theory pre-
serations and constructin an incremenal way descriptionsof complexsystems.
The signature morphismsin Figure 2.7 (b) descrilke how the speci cation sym-
bols above arerelated to eat other by way of translation. It is easyto seethere
that the sameset of real evens is represeted by the pairs of action symbols
in ead speci cation, becausethey are equalisedby the morphismsin the dia-
gram. Indeed, when the trigger of the medanical deviceis pushed,the trolley
is releasedand the card deposited inside the safe. In e ect, they correspnd to
the samecomplexewert. When the translations above are applied in a compo-
sitional mannerto axioms, speci cation morphismsare induced de ning a way
of putting the set of speci cations together to represen the whole system, as
presened in part (a). Axiom (2.1) is translated not only into (3.2) but alsointo
(4.2), justifying the fact that the actions of both LockerCPL and SafeCPL
are mutually exclusie.

Identifying the samesynbol with those of other speci cations, we ensure
that this symbol will represeh a sharedresourcewhenthe speci cations are col-
lapsedinto a single object. In our example,all the action symbols of Device ,
pull and push, are assaiated to the symbols of LockerCPL and SafeCPL ,
becausethe ertire deviceis a shaiedobject. When#we require in addition that

constructionslike LockerCPL !" SystemCPL ? SafeCPL be co-limits, a
generalisedorm of pushout possibly connectingseeral objects in a co-conedi-
agram, we do not needto be concernedwith the exactde nition of the resulting
ertities becausat is provided up to isomorphism. In our example,SystemCPL
is only a represetativ e of the classof theory presenations induced by the con-
nection of LockerCPL  and SafeCPL through Device and the given mor-
phisms. Any other object in this classcould be usedin its place and the same
is true concerningthe morphisms § and j. Of course,we are only allowed to
usesut CPL constructions, and we always do so hereafter, becausewe know
they exist, due to the co-completenessf FinSet .

Sofar, we have concettrated on showving that CPL is a usefulspeci cation
tool. In the formal design of software systems,we also face the problem of
verifying characteristic properties. For instance,we may want to prove that the
systemdescribed above will allow somecustomeraction only if either a trolley
or a card is currently held by the system. This can be stated as follows:

" oeemce. USE_return ! trolley_in _ card.in (2.3.3)

We usethe structure of SystemCPL and the speci cation axiomsto verify this
property. We alsorely on helpful theoremsand rules stated in Appendix I:
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Proof:

1. release! trolley.n 4.1 (LockerCPL )
2. use! trolleyin _ card.in OR-R } (1) (SystemCPL )
3. collect! card.in 3.1 (SafeCPL )
4. return ! trolleydin _ card.in OR-R § (3) (SystemCPL )
5. use_return ! trolleyin _ card.in OR-L 2,4 (SystemCPL ) R

The application above of induced speci cation morphismsto translate the con-
sequencebtained in ead proof stepis worth noticing. It isin this way that we
can enlargethe languageof LockerCPL  and apply the rule OR-R to include
an additional disjunct in the right hand side of the rst implicative assertion.
The resulting sertence belongsto the theory of SystemCPL . Much in the
sameway, a similar conclusionis obtained from the SafeCPL axiom. If we
considerthat this veri cation processstarted from (2.3.3), we are also allowed
to say that the proof of that property was decommsedinto a set of proofs of
simpler properties by the proof calculusand the given morphisms. This way of
decompsing proofs was rst studied by Fiadeiro and Maibaum (1992).

It is interesting to note that the morphismsemployed above in the con-
guration of the systemare all faithful. For instance, because(2.1) belongs
to Device , all the properties involving the symbols in this presemation when
translated by ; into LockerCPL canalreadybe derived within Device . This
meansthat the object doesnot have more properties when placedin the com-
plex con guration. It is useful to leave the possibility of using non-faithful
morphismsopen so that someproperties of speci ed objects emergeonly when
they are placedin certain con gurations. There are two ways of supporting this
feature: to uselooserspeci cations (with a wealer set of axioms) or to adopt
a weakly structural ertailment system. Both casesshall be exploited in the
remainder of the thesis.

2.4 Prop ositional Linear Time Logic

We discoveredin the previoussectionthat classicalpropositional logic is useful
in dealingwith the nite state and the relations betweeninstantaneouseverts
of real systems.Howeer, the samelogic turns out to be lessusefulto represemn
changeandtime dependen behaviour. Essemially, it would be necessaryo code
the passingof time in eacy CPL theory sothat we could rely on this feature.
Unfortunately, CPL as de ned above is not expressie enoughto permit the
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represetation of in nite ows of time. To overcomethis and other limitations,

temporal logics having additional connectivesto deal with the time dimension
may be used. Here we choosean entailment systemwith two temporal connec-
tivesonly: beg, denoting the beginning of time, and V, the strict strong until

connective which is usedto express,when we assertpV g, that the property
p occurs strictly in the future (i.e., after the curret momert) and q happens
uninterruptedly from the next instant until but not necessarilyincluding the
momert of the p occurrencé.

De nition 2.4.1 (Prop ositional Linear Time Logic) The ertailment sys-
tem of propositional linear time logic, PLT L for short, is de ned asfollows:

SigPLTL - SigCPL.

[PLTL d:ef [ cPL [ fbeg;Vgg;

EPLTE = idsigPLTL;

Foreah in objSig""", G'"'() isdened by P"'"t asfollows:
PPLTL = PCPL J bng (PPLT L)V(PPLT L)

We usethe following abbreviationsfor eah fp;qg G°"-() tointroduce
the connectivesnext, the non-strict strong until, evertually in the future,
always in the future and weak until (apart from next, these connectives
all range over the presem momert aswell):

(D6-X) XpdlfpV?;

(D7-U) pUqiq_(p”" qvp);

(D8-F) Fp&r>Upforp_pV>];

(D9-G) Gp&f: F(: p) [orp™: (: PV>];

(D10-W ) pWq®'Gp_pUqlor (p™: (: pV>)_q_ (p" avp);

For eadh in objSig"""", the entailment relation ~ *'"* is generatedby
the proof calculusof CPL together with the following one, provided that
they are both stated over G- (), whereinp, g, r and s are included:
(A4-GV ) I'PTTEG(p! 9! (pvr! qVr);

(A5-GV ) 'V G(p! ! (rVp! rVo);

8pv q V (p;0) (Gabbay et al. 1994) qlf) p (Manna and Pnueli 1989).
9We have chosenV to distinguish the strict strong until connective proposedby Kamp from
U, the non-strict connective normally found in temporal logics of programs (Pnueli 1977).
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(A6-V ) """ pVq! pV(g" pVa);

(A7-V ) I'PTH (pravpVp! qvp

(A8-V ) ' ipvarrvs!t (prr)V (gt s)_(p*s)V (g s)_(a*r)V (9" s);
(A9-V ) I'""“(p_qVr! pVr_qgvr;

(A10-G) I'"""G(p! Xp! (p! Gp)

(A11-X) P78 X>;

(A12-Xb eg) I' """ : X(beg);

(R2-G) fpg" """ Gp;

(R3-b egG) fbeg! Gpgl "' p. []

Note that, by including above the set of axioms of classicalpropositional logic,
we obtain a proof calculussubstartially di erent from that proposedby Manna
and Pnueli (1989), where all the propositional validities are acceptedwithout
presemation of formal proof. Our axiomatic presemation appearsto be more
appropriate given our additional interest in formal stepwise developmen, where
only formal reasoningcan justify software constructionsin full.

The proof calculusabove is obtained from setsof axiomswhich also con-
sider a strong strict since connective as discussedin (Gabbay et al. 1994) by
removing this past-time connective and including beg instead. SchemasA4,
A5 and A9 together with R2 guarartee that we have a normal modal logic,
which can be interpreted over relational structures. A6-7 ensurethe transitiv-
ity of theserelations and we enter in this way the realm of temporal logic. A8
in the presenceof the other axiomsimplies that time is linearly orderedtowards
the future. In particular, due to our choice of initialised time o ws, this is true
everywhere. We alsoinclude A10 to capture temporal induction. We useAll
not only to guarartee that the time ow doesnot have endpoints but alsoto
ensurethat there is always a next instant, capturing discretetime. Axiom Al12
s&ys that no instant precedesthe initial one. Rule R2 is the usual temporal
generalisationand R3 may be called begG-elimination.

The readermay want to verify that A1-11 and R1-2 ertail all the proposi-
tional theoremsof the logical consequenceelation de ned by Manna and Pnueli
(1983),which is stated in terms of the setof connectivesde ned asabbreviations
here. This lengthy proof can be dewloped basedon the auxiliary theoremsin
Appendix I. We adopt ows of time with xed characteristicsasin their work
to minimise the possibility of generatinginconsisten composedspeci cations.
This would be the caseif two composedspeci cations could assumerespectively
discreteand dense o ws, with and without endpoints, and soon. It is easyto see
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that, adopting the su cien tly generalclassof initialised discrete o ws without
end points, we can still talk about most interesting properties in terms of the
occurrenceof actions. Termination, say, can be satisfactorily represeted by the
evertual and ewerlasting impossibility of action occurrence.

The application of linear time logical systemsin software designhasbeen
streamlined by the separationof temporal properties into two distinct families
dueto Alpern and Scneider (1985) and the respective dewelopmen of suitable
reasoningprinciples by a number of authors. Livenessproperties stating what a
systemevertually performso er great challengesto veri cation methods. They
aretreated usingthe generalproof rule derivedin Section2.7. Safetyproperties,
which de ne what a systemalways ensuresare veri ed hereusingthe following
derived inferencerule:

Theorem 2.4.2 (Inference Rule IND-b egG) The following inferencerule
forany p2 G -() isderivablein PLTL:

(IND-b egG) fbeg! p;G(p! Xp)gl """ p (anchored temporal induction).

Proof:

1. beg! p Ass
2. G(p! Xp) Ass
3. G(p! Xp)! (p! Gp) Al10-G
4. p! Gp R1-MP 2,3
5. beg! Gp HS 1,4
6. p R3-b egG 5 W (IND-b egG)

whereHS is the hypothetical syllogismrule stated in Appendix 1. It isimportant
to stressthat andiored temporal induction must be captured as a proof rule
sincethis property cannot be consistely written as an axiom sdiema in the
presenceof the other usual temporal logic shemas. Kroger (1987) recalls that
adopting a similar schemawould trivialise the whole logic. Manna and Pnueli
(1989) overcomethis problem as above, consideringthat beg is de nable in
terms of past time connectives. In TLA, the Temporal Logic of Actions of
Lamport (1994), an invariancerule is adopted instead sincebeg has no logical
courterpart and eat canonicalspeci cation de nes an initialisation condition.
Let us return to our supermarket example. We can now incremen the
speci cation of the systemusing the features of temporal logic. Note that all
the previous speci cations can be reusedbecauseCPL formulas are allowed in
PLTL. Due to this fact, we presen the extendedde nition of the systemin
lessdetail. In order to de ne that a state p of the systemchanges,sometimes
accordingto the occurrenceof speci ¢ actions, we usethe following de nition:

Mod(p) & (p™ X(: p)) _ (: p" Xp)
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Specication LockerPL TL Specication SafelLPTL

attributes trolley_in attributes card_in

actions releaselock actions deposit; collect

axioms axioms

beg! troley.in (6.1) beg! : card.in (7.1)
release! X (: trolley_in) (6.2) deposit! X(card.in) (7.2)
lock ! X(trolley_in) (6.3) collect! X(: card.in) (7.3)
release lock _: Mod(trolley_in) (6.4) deposit_ collect : Mod(card_in) (7.4)
End End

Figure 2.8: Speci cation of the supermarket systemin PLT L.

LockerCP+L TL —— — SystemPL TL ——— SafeCP+L TL
1 2
" % # %
1:1 @1.2 2:1 @2.2
@ @
LockerPL TL LockerCPL SafeCPL SafePL TL
i % T ) 4
1:1 @ 1:2 1 @ 2 2:1 @ 2:2
@ @ @
Locker Device Safe

Figure 2.9: Con guration of the supermarket systemin PLT L.

This abbreviation is employed in the axioms of Figure 2.8. We also assume
the existenceof speci cations Safe and Locker cortaining only the signature
symbols preseited in Section2.3. Theseare usedto de ne the extendedcon gu-
ration of the system,which appearsin Figure 2.9. We only mertion in that gure
the relevant speci cations becausedhe other onesare de ned up to isomorphism
by the pushout construction which results in SystemPL TL . In addition, we
postulate that the morphismsremaining to be de ned are all idertities.

The connectivesof temporal logic allow usto make referenceto the passing
of time in ead speci cation. Usingbeg in axiom (6.1), we de ne that atrolley is
initially attachedto the locker. Conversely the safeis originally empty according
to (7.1). The e ect of actionsover the attributes of ead ertit y arede ned based
on X, the next time connective. Axiom (6.2) speci es that a trolley will not be
kept locked to the systemin the next instant if it is releasedin the current
momert. Once locked again to the system, (6.3) ensuresthat the trolley will
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be subsequetly available. Although this kind of axiom treats action e ects
with precision, they do not ensurethat the respective attributes will remain
invariant otherwise. This is normally calledthe frame problemin the literature,
which becomesoverly complicatedin the presenceof concurrency Becausein
our example eat object does not presen internal concurrency their actions
being mutually exclusive, we may adopt a simple solution. Ryan et al. (1991)
propose an axiom requiring that either the actions of eat object happen or
elsethe attribute valuesdo not change. This is what (7.4) says: that a card is
either deposited or collectedat eady momen or elsethe state of the safeis not
modi ed. In Chapter 3, we will capture this notion of locality logically.

We have veri ed that the supermarket systemwill not allow any customer
action unlesssomeobject is held by the system,be it a trolley or a card. It is
also possibleto prove using CPL that this property can be made stronger in
that preciselyone object must be held if any action is to take place. Using our
temporal proof calculus and the extended speci cation of the system, we can
now prove that this state condition is newer violated. That is, it is always the
casethat either a trolley or a card is connectedto the system:

AN

SystemPL TL G(trolley_.in $ : card.in) (2.4.1)

Simpletemporal reasoningbasedon the theoremsin Appendix | shavsthat this
property can be decommsedwithin SystemPL TL :

1. G(trolleydin ! : card.in)”™ G(card.in ! : trolley.in) Ass

2. (G(trolleyin ! :card.in)” G(card.in ! :trolleyin)) $ DIST-ANDG
G((trolley.in ! : card.in)” (card.in ! : trolley.n))

3. (G(trolleyin ! : card.in)™ G(card.in ! : trolley.in)) ! IFF-E 2
G((trolley.in ! : card.in)” (card.in ! : trolley.n))

4. G((trolley.in ! : card.in)” (card.in ! : trolley.n)) R1-MP 1,3

5. G(trolley.in $ : card.in) D5-IFF 4

Becausethe two conjunctsin (1) are similar, we will only dewelop the proof of
one of theseproperties. The other proof can be deweloped similarly.

At this point we have a good opportunity to apply our derived inference
rule IND-b egG for anchored temporal induction. This inferencerule allows
us to decompsethe proof of the assumptionabove into the veri cation of an
initial condition and an invarianceformula of SystemPL TL :

6. beg! (trolleyin! : card.in) Ass
7. (trolleylin ! :cardin)! X(trolleyin ! : card.n) Ass
8. G((trolley.in ! : card.in)! X(trolleyin ! : card.in)) R2-G 7
9. trolleyin ! : card.in IND-b egG 6,8

10. G(trolley.in ! : card.n) R2-G 9
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The initial condition (6) is proved using classicalreasoning:

11. beg! trolley.n (6.1)
12. beg! : card.n (7.1)
13. beg! trolley.in ” : card.in AND-R  1(11), 2(12)
14, : card.in ! (trolleyin ! : card.n) Al-l

15. (trolley.in ~ : card.in) ! (trolley.in ! : card.n) AND-L 14
16. beg! (trolleyin ! : card.in) HS 13,15
where ; %f (= ;;)*, the composition of two morphismsdeterminedup to iso-

morphismby the pushoutconstructionin Figure 2.9. The proof of the invariance
formula (7) requiresadditional temporal reasoning:

17. use! X(trolleyin ! : card.in) Ass
18. return ! X(trolley.in ! : card.n) Ass
19. : Mod(trolley.in) ~ : Mod(card_in) ! X(trolleyin ! : card.in) Ass
20. use_return _ (: M od(tr olley_in) * : M od(card_in)) ! OR-L 17,18,19
X(trolley.in ! : card.n)
21. release_lock _: Mod(trolley.in) (6.4)
22. deposit _ collect  : M od(card.in) (7.4)
23. (use_return _: M od(tr olley_in))" AND-I  1(21), 2(22)

(use_ return _ : M od(card_in))
24. use_return _ (: M od(tr olley_in) ~ : M od(card_in)) DM, IFF-E , R1-MP 23

25. X(trolleyin ! : card.in) R1-MP 24,20

26. X(trolleyin! : card.in)'! Al-l
((trolleydn ! : card.in)! X(trolleyin ! : card.in))

27. (trolleyin ! :card.in)! X(trolleyin ! : card.in) R1-MP 25,26

In orderto completethe veri cation of property (2.4.1), we prove assump-
tion (17) above asfollows:

28. use! X(card.in) (7.2)
29. use! X(: trolley.n) (6.1)
30. use! X(card.in)”™ X(: trolley.n) AND-R  ,(28), 1(29)
31. X(card.in)™ X (: trolley.in) ! X(card.in ~ : trolleyin) DIST-ANDX , IFF-E
32. use! X(card.in ~ : trolley.n) HS 30,31
33. (card.in ! :trolleydin)! (:: trolleyin ! : card.n) CONP
34. trolleyin ! :: trolleyin DOUB , A3-N , R1-MP
35. (trolleyin ! :: trolleyin)! LTRAN
((:;: trolleydn ! :cardin)! (trolleyin! : card.in))
36. (:: trolleydn ! :cardin)! (trolleyin! : card.in) R1-MP 34,35
37. (card_.in ! :trolleydin)! (trolleyin ! : card.in) HS 33,36
38. (card.in * : trolleydin) ! (card.in! : trolley.n) Al-l , AND-L
39. G((card.in ” : trolleyin) ! (trolleydin ! : card.in)) HS 38, 37,R2-G

40. X (card.in ~ : trolley.in) ! X(trolleyin ! :cardin) MON-GX ,R1-MP 39
41. use! X(trolley.in ! : card.in) HS 32,4001
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The proof of (18) is deweloped in the sameway, without stepssimilar to (32-37)
becausewe obtain in this casethe required implication in the right direction.
Assumption (19) is proved by simplealthough tedioustemporal reasoningwhich
is omitted here. This concludesthe veri cation of (2.4.1).

An analogy betweenthe properties of concurrert systemsand (2.4.1) ap-
pearsto be in order here. The componerts of a real systemare said to bein a
deadlock state if and only if it is impossiblefor ead of them to perform compu-
tations becausethe other componerts have not provided somelocally required
functionality. Since all the componerts remain waiting for one another, the
whole systemstops. A typical exampleis a circular trac jam in which no car
is allowed to proceedbecausevehiclesin perpendicular streetsblock the passage.
The negation of (2.4.1) is another example wherein either the empty safe will
always expect a forbidden action from the empty locker and vice versa,or else
both occupied equipmen wait forever for their impossibleutilisation. Safet
properties like deadlack freedomassertthat somethingbad never happens. We
have just applied a method which allows us to verify sud properties when the
given speci cations are informative enough.

2.5 Prop ositional Branc hing Time Logic

Even though propositional linear time logics as studied in the previous section
are appropriate for describingthe behaviour of someconcurrent systems,these
logics have limitations too. Sistla et al. (1984) and Koymans (1987) proved
many inexpressibility results stating that it is impossibleto descrilke unbounded
messagebu ers using sud logics. As a practical result, we can infer that the
speci cation and veri cation of most kinds of concurrert asyndironousmessage
passingsystemswould require a rst-order temporal logic or similar. We shall
revisit this issuein the sequel.

There is, howewer, an alternative direction towards increasingthe expres-
sive power of propositional linear time logics that appearsto be worthwhile
studying at this point. This study is motivated by practical reasonsrelated to
messag@assingsystemsaswell. In this domain, it is frequent to demandforms
of guararteed delivery whereinead dispatched messagenust be received when-
ewver it becomespossibleoften enoughfor the recipiert to acceptit, a particular
kind of livenessproperty usually called fairness (Gabbay et al. 1980). Sud re-
quiremerts rule out allegedly unreasonableor unfair behaviours in which some
messagesre always ignored even though the recipiert could acceptthem. Al-
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though we know how to specify that somethingwill happenin the future using
the connective F, we do not know how to expresspossibility using a pure linear
time logic | that there are somebehaviours in which an ewvert indeed occurs
despite the fact that we cannot ensureit is the currert behaviour. Assuming
branching o ws of time makesthe solution of this problem conceiable.

Two plausible and completely distinct views concerningthe de nition of
branching time logics are available in the literature (Zanardo 1996). The so-
called Priorean view advocatesthat a sertenceassertingthe evertual occurrence
of a proposition is true at a given momert x if and only if the proposition is true
at somemomert in somefuture of x. Conversely the Ockhamist view argues
that it is meaninglesgo discussthe truth value of a proposition unlessadditional
information is provided about the actual future. To clarify this distinction, a
metaphor can be de ned. Assumethat a systemand two omniscient obseners
are given, Eagerand Lazy. Both seethe systemewlving almost as de ned in
the previoussectionin that ead behaviour hasan initial instant, is discreteand
in nite. Eager,who adopts a Priorean view, politely ignoresewerything elsehe
knows and follows the systemclosely allowing his own currert momert of time
to be always equal to that of the system. According to his perceptions,what
will happenin the future spansas many brandhesof undeterminedpossibilities.
Lazy, on the cortrary, adopts an Ockhamist view and prefersto prevert his
time from passing,staying outside of any existing behaviour in the underlying
time frame. He can only seethe distinct behaviours of the systemas a set of
linear terminated sequenceskFor him, what could have otherwisebeenthe case
at somemomert of a behaviour is de ned in terms of other possiblebehaviours
of the system. Comparing thesetwo distinct views, we can concludethat what
is regardedas a brandhing time logic dependson the chosenkind of obsener.
Both are reasonableviewsthat allow usto talk about possibility.

Axiomatisations of Priorean and Ockhamist logics have di erent virtues.
Priorean logics have beenpreferredin the study of linguistic structures. Some
of theselogics, which are normally de ned by a reducedset of axiom schemas
and rules, are studied in (Gabbay et al. 1994). Ockhamist logics have been
prevalent in the designof software systemsas shavn by the extensiw literature
(Emerson 1990, Stirling 1992, Zanardo and Carmo 1993). This may be due to
the fact that all the axiom schemasde ning linear time are still valid concerning
eat behaviour. Priorean logics, on the other hand, do not obey sdhemaslike
A8-V requiring linearity. Ockhamist branching time demandsin this way an
additional connective E to expresspossibility, the existenceof a potentially
distinct behaviour obeying a given property with a strict past history identical
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to that of the current behaviour. As a result, a larger set of axiom sthemasis
required. Here we adopt A, the dual to E, as a logical connective of necessy
and chooseto de ne our brandiing time logic asfollows:

De nition  2.5.1 (Prop ositional Branc hing Time Logic) The enailment
system of propositional branching time logic, PBTL for short, is de ned as
follows:

SigPBTL - SigPLTL.
LPBTL d=efLPLTL [ ng,

EPETL = id SigPBTL ;

Foreah in objSig""®™, G®"() isde ned by PP®™ asfollows:
PreTt = PPUTL jA(PPRTY)

We alsousethe following abbreviation for ead1 p2 G- ():

(D11-E) Epdef: A(: p).

For eatch in objSig”®™, the entailment relation " "®™* is generatedby

the proof calculusof PLT L togetherwith the following one, provided that

they are both stated over G2 (), whereinp and g are included:

(A13-A) I'"BT"A(p! 9! (Ap! Aq);

(A14-A) I'PBTEAp! p;

(A15-EA) I'PPTEp! AEp;

(A16-EV ) I'PPT" (Ep)VQq! E(pVQ);

(A17-AXU)  [T"*TFA(p! X(qUp) ! (p! XA (qUp);

(A18-Eb eg) I' "®" E(beg) ! beg;

(R4-A) fpgl "™ Ap. []
This de nes a full branching time modality, in the sensethat there is no re-
striction on using A in the scope of any other connectiwe. Interesting logics
with a nesting restriction do exist sud asthe Computation Tree Logic (CTL)
of Emerson (1990). Also note that Lamport (1994), although consideringan
axiomatisation of linear time only, include in his logic an enableinessconnective

En analogousto our E without providing correspnding logical axiom sthemas
or inferencerules to support its derivation.
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Axiom sdhemasAl13-15 and rule R4-A for modal generalisationmake of
A an S5 modality, which is determinedhereasusual by an equivalencerelation
on the worlds that occur at the samelevel in the set of legal behaviours. This
reducedset of sthemasand rules is distinct from (although equivalert to) the
usual S5 axiomatisation, which is de ned using another set of schemas(Gold-
blatt 1992; Exercise2.8). Axiom A18 says that the possibility of the current
momert being initial forcesit to be the case,meaningthat all behaviours are
at rst syndironised,i.e., the level of their initial worlds is the same.A16 con-
sidersin addition that a behaviour possessean alternative in a future momert
only if its subsequen history up to but not including that point could also be
realisedby the alternative behaviour. ShemaAl7 extendsthis requiremen in
a pointwise manner by including the current momert in ead future history.

Taking into accoun the precedingset of axiom schemas,we seethat what
makes our branching time logic really dierent from other formalisms is the
interpretation assignedto E. Here we read a formula Ep as p occurring in
somepossiblebehaviour with an idertical past history not necessarilyincluding
the current momert (or world). This meansthat E hasa strict interpretation
here. This interpretation easilyyieldsinvalid an axiom schemafor non-strictness
proposedby Stirling (1992): Ep ! p for any atomic p. As an advantage we
obtain that the substitution property still holds, which meansthat it is possible
to substitute formulas by logically equivalert onesin any serience. This is,
howeer, atemporary achievemern sincewe loosethis property whenconsidering
a rst-order extension of this branching time logic. Our interpretation also
ertails for the samereasonthat the logic above is substartially di erent from
CTL (Emerson1990),wherethe sameconnectie refersto behaviours with an
idertical past history necessarilyincluding the current world. For atomic p,

Ep”*:p! Xp (2.5.1)

hasa cortradictory antecedem in CTL whereasthis neednot be the casehere.
We do not know how to expressin CTL this property that p happensat most
eat other momert in any behaviour. On the other hand, consideringa de nition

of that logic in terms of our syrtax?, the theoriesof CTL are interpreted into
PBTL by afunctor B: Th®™ ! ThP®™ mapping signaturesas the identity
andeah p 2 Th (), in obj Sig°™" and G(), into beg! B (p)
belongingto B(Th ()), whereB is de ned asfollows:

1ONote that beg doesnot have a syntactic courterpart in CTL .
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Figure 2.10: Interpretation of branching modality in (a) PBTL and (b) CTL .

B (p) defp; for p2 E°T ()
B (:p 4B (p)

B(p! o <«B(p! B(q
B(pvg  %f(B (p)V (B (9)
B (Ap) defp; forp2 E°T ()

B (A(pVa) £ XA (B ())U(B ()

B (Ap) def A(B (p)); for any other p
and eat theory morphism : Th ( 1) ! Th ,( 2) in maph Th™ into
B():fB{Mjp2Th ,( )g! B(P)jp’2 Th ,( 2)g. Zanardo (1996) also
studiesmany similar temporal logics.

Branching time logics are regarded as particular many dimensional for-
malisms by Gabbay et al. (1994). Essemially, new dimensionsrequire addi-
tional argumerts in interpreting ead formula. We use trees as a conceptual
abstraction of parallel behaviours in Figure 2.10to clarify this interpretation.
We indicate therein points of referencefor interpretation using ( ) and setsof
possibleevaluation points of a formula are circumscribed by dashedboxes. In
CTL , ewaluation and referencepoints coincide as showvn in Figure 2.10 (b).
This is not, howeer, the requiremen in our case.Hence,any behaviour passing
through ( ) in Figure 2.10(a) makesa formula EG p true becausehere is some
future history following that past momert satisfying Gp.

It is customary to imposeadditional restrictions on the ows of time in
bidimensionallogicsasa meansof capturing the behaviour of computerprograms
in a more realistic manner (Emerson1983). Sud restrictions are:

Pre x closure: Pre xing transitions to a behaviour resultsin avalid behaviour;

Sux closure: Every sux of abehaviour is itself a valid behaviour;
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Figure 2.11: FEFE p! FEpisnot valid in PBTL.

Fusion closure: Joining the past and the future of distinct behaviours at a
sharedmomert always resultsin another valid behaviour;

Limit closure: If a behaviour can be followed for an arbitrarily long but nite
length of time, it can be followed for an in nite length of time.

Su x closureis invalid here sincewe adopt initialised behaviours and the pro-
cessof taking out their initial segmets doesnot guarartee that the remaining
histories have acceptableinitial momerns, asidentied by Manna and Pnueli
(1989). Pre x closureis alsoinvalid since nite behaviours are not admissible.
Fusionclosureis not supported aswell becauseve canwrite, basedon the initial
momernt, sertencesthat can distinguish two future histories sharing somemo-
mernt, although Stirling (1992) mertions that this property may be captured by
AX p! XA pandthis schemais derivablefrom A16 . Finally, we do not assume
limit closurebecauseadoing sowould prevent usfrom treating important notions
of fairness. In fact, Emerson(1983) recogniseghat these assumptionsdo not
always make sense,specially in represeting real life objects or computational
processewhich have a de nite notion of state. All the axiom schemasabove
are solely derived from the interpretation given to our branching modality.
Onceagain, the supermarket examplecan be usedto illustrate the appli-
cation of our logical system. Taking asa starting point the speci cations of last
section,let usassumethat ead componert canprovide somevisual information
on its current state. The locker, for instance, is able to signal that the trolley
has beenremoved. The additional action synbols represeting the display of
visual information are introducedin Figure 2.12. Suppose,moreover, that, due
to physical limitations, it is still impossiblefor ead of theseobjects to allow the
occurrenceof more than one action at ead time. We capture this constraint
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Specication LockerPBTL
attributes  trolley_in
actions releaselock; show_out

axioms

release lock! : show_out (8.1)
shav_out ! : trolley.in (8.2)
:trolley_in ! E(show_out) (8.3)
: lock ™ E(shav_out) ! Just(shav_out) (8.4)
End

Specication SafePBTL
attributes card_in
actions deposit; collect; shaw_in

axioms

deposit _ collect! : show_in (9.1
shav_in! card_in (9.2)
card_in ! E(shaw_in) (9.3)
. collect™ E(show_in) ! Just(show_in) (9.4)
End

Figure 2.12: Speci cation of the supermarket systemin PBTL.

through axioms(8.1) and (9.1). This meansthat a safeconnectedto the system
asshown in Figure 2.13is preverted from allowing shav_out to happenwheneer

lock or releaseoccur, which are in turn mutually exclusiwe actions becauseof

(2.1). Sincewe do not want to preclude customersfrom performing any action,

we cannot require that state information be displayed due to this disjointedness
constrairt. Instead, we adopt axioms (8.3) and (9.3) stating that information

may be presertied whenewer eat object is in use. Theseare so-calledwillingness
properties (Barreiro et al. 1995),which say that ead object is willing to perform

an action although its occurrenceis not guararteed.

Willingness properties alone are too weak to force the occurrenceof any
action. In our example,although endaved with enoughstructure to display their
busy state, there may be behavioursin which both safeand locker arebeingused,
but newer presen sud information. Then, the additional structure we have just
de ned would be useless. To increasethe e ectivenessof the system, we can
enforcesomeweak fairnessconditions, de ned using the following abbreviation:

Just(p) & F(p_ A(: p)

Axiom (8.4) speci es that wheneer it is possiblefor the locker to display some
information and the trolley is not being returned, its state will be presened in
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LockerCP+L+BTL — — SystemPBTL — SafeCP+L+BTL
1 2
’ % : %
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Figure 2.13: Con guration of the supermarket systemin PBTL.

the future (which possiblyincludesthe currernt instant) or elsethis will become
momerntarily impossiblefor the locker. Becauseof (8.3), we caninfer that in this
last situation the trolley would have to be badk again. On the other hand, for
the trolley remaining in useinde nitely, the locker would ewertually be obliged
to presem someinformation. Summarisingtheseinformal obsenations, we can
now ensurethat the display would work evertually wheneer allowed to do so
by the actions of supermarket customers(or possibly thieves).

Fairnessaxioms allow us to de ne in a modularised way how ead object
constrainsthe ervironment. A supermarket could not prevent information from
being displayed, perhapsimposing additional conditions over the occurrenceof
show_in, while employing the locker and safeabove. This would cortradict our
fairnessaxioms. We may, on the other hand, try to describe a perfect system,
which would display state information wheneer it had the opportunity. The
following formula concerningthe safewould be valid in this case:

: collect”™ E(shawv_in) ! show_in (2.5.2)

Unfortunately, although a speci cation with formula (2.5.2) substituting (9.4)
would not be inconsistert, the sequetial perfect safespeci ed asa result would
not have a display realisableas computer program: the decisionasto whether
or not to presem someinformation would have to consumeno time.

2.6 Classical First-Order Logic

Unlessaugmerned with additional logical connectivesto capture the peculiar
characteristics of speci ¢ domains, an examplebeing the temporal connectives
de ned in the previoussectionsto dealwith time, propositional logicsare unable
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to expressn full generality the properties of individual objectsin the cortext of
their collections. For instance,in our previous example consideringthe super-
market system,it would be impossibleto require from ead customerto return
the samereleasedtrolley becausethere were no logical meansto say that any
other trolley would not be acceptable. Much the sameoccurs with deposited
iderti cation cards. Another more problematic examplerelated to computing
is obtained by consideringconcurrert messageyassingsystems,which cannot
be faithfully speci ed within the realm of propositional logics becauseeat ex-
changedmessageeedsto be taggedin an unique way to ensureit will not be
replicated. If we assumethat time doesnot have end points and seethat many
messagesnay be dispatdhed at ead instant, it is easyto concludethat the set
of tags needsto be in nite. But we cannot talk about the in nitary character
of somedomain with nite proposition synbols and nitary connectivesonly.

Indeed, the weaknesf propositional logical systemsappearsto lie in the
absenceof linguistic meansto pick a denotation of an object in ead domain of
discourseand relate it to the denotation of any other object therein. This justi-
es a shift to rst-order formalisms,which, through the useof logical variables
and quarti ers, allow usto dealwith theseissues.lgnoring for a while the time
dimension, we de ne below what we understand by classi@l rst-or der logic.
Onceagain, we facethe de nition of a well-establishedogic, already studied by
a number of authors sud asvan Dalen (1994). We take advantage of this fact
to introduce in what follows most of the notation to be usedin the remainder
of the thesis.

De nition  2.6.1 (First-Order Logic) The ertailment systemofclassial rst-
order logic, F OL for short, is de ned asfollows:

SigF°" = FinSet  FinSet sud that there exist:

1. Pred;Funct : Sig"°" ! FinSet , forgetful functors assigningsigna-
tures to disjoint setsof predicate and function symbols, respectively;

2. Type a map assigningeathr  in obj Sig"°" to a similarity type
(arity Pred: arity Funct), ead arity itself a function with domarity Pred
def Pred(), dom arity "unct def Funct() and cod arity P"ed def
cod arity Funct def N . We usually drop the indexesfrom ead arity ;

LFo-def LSP- [ f8; g[ VFO°- (a setof variableg, sud that jVF°-j def @;

Foreadh in objSig™°, EF°-() defPred) [ Funct();
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For eadh in obj Sig™°", Term(), Atom() and G °-() arerespec-
tively setsof terms, atomic formulas and formulas de ned by TF°-, AFo*

andFF°* asfollows, providedthat x 2 VF°- f 2 Funct() with arity (f) =
manda2 Pred/) with arity(a) = n:

TFOb = x jf(Tfo8 ;i TEOY)
A,:OL e a(T]'_:OL ..... TFOL)
= a(Tyet n
FFOL i= AFOL j: FFOL j FFOL | EFOL j(FFOL) jgx FFOL

FOL

We alsode ne afunctor Expr : Sig"°" | Set asseiating in obj Sig
to a setof expressionsExpr() % G°() [ Term() [ E™° ().

FOL is equipped with a map Freewhich assignseatcy in obj Sig to
a free variable function Free : Expr() ! P (VF°). For x 2 VF°ot,
t; 2 Term() andfp;pg Expr(), Fregp) is de ned asfollows:

FregXx) def fxg

Fregf (ty;:::;ty)) f " fFredt)jl i ng;
forf.2 Funct() andarity(f) =n

Frega(ty;:::;t,)) df " fFredt)jl i ng;
fora2 Pred) andarity(a) = n

Fred: p) def Freqp)

Fregpi! p)  &'Fregp:) [ Fregp,)

Freg8x p) efFreqp) fxg

Free(p) et f g;

for any other p2 Expr()

To stressthat fx;yg Fredgp) must be the case,we write p[x;y].

FOL is also equipped with a map [ ] assaiating eatcr  in 0obj Sig"°" to
a substitutionfunction[] :G°() Vet Term() ! G°-(). For
any ftij;rg  Term(), g2 VF°- andp2 G°-(), p[gnr] denotingthe
substitution of g by r in pis de ned asfollows:

qlanr] def q

forf 2 Funct() andarity(f) =n
a(ty; o ty)anr] et a(t,[gnr];:::; ta[gnr]);

fora2 Pred ) andarity(a) = n
(- pa)[anr] def 2 py[anr]
(P! po)lanr]  <fpyfonr] ! pofgnr]
(8x pylagnr] " 8x (pionr]);

for x 2 VF°  Fredr)
planr] ¢t p;

for any other p, gandr:
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wherep is the underlined expressionin eat caseabove.

We sa that r is free for q in p if and only if eat occurrenceof g in p
doesnot appear in the scope of a quanti er which binds someof the free
variablesof q in commonwith r. We only considera substitution p[gnr]
to be admissibleif r is freefor g in p. We also assumethe existenceof a
substitution relation f g assaiated to [ ] which performsjust someof the
speci ed substitutions.

The following abbreviation is usedfor each p2 G °-() andx 2 VFot:
(D12-9) 9x pdf:8x :p.

Foread in objSigF°", the entailment relation ~ F°* is generatedby the
proof calculusof CPL togetherwith the following one, provided that they
are both stated over G °-(), whereinp andgareincluded,that x 2 VF°-
with x 62Fredqp) andthat t 2 Term() is freefor x in p:

(A19- 8) I"F°-(8x p[x])! p[xnt];
(A20-8) I'F°"8x (p! ! (p! 8x 0);
(R5-8) fp! qgI"f° p! 8x q. ]

The de nition of rst-order logicis more elaborated than the propositional case.
The category of signaturesis endaved with linguistic structure to represem
genericproperties of elemeits using predicate synbols and functional relation-
ships betweenthem through function symbols. Theseelemelts are denoted by
argumerts in applying suc symbols aswell asthe result in the caseof functions.
This is why rst-order logic symbols are assignedo an arity, to de ne the num-
ber of elemers involved in thesesituations. The logical languagealso cortains
a courtably in nite set of variablesand a quarti er synbol which allow us to
expresspropertiesin genericform. Thesenotions are standard.

What is unusual in our de nition above is the use of a relation instead
of a function to deal with substitution. We shall seein what follows that this
additional generality is requiredin stating the properties of logical equality. A
similar notion of parallel substitution is proposedby van Dalen (1994), who
considersonly substitutions of terms for variables within formulas but allows
many of them to be e ected in parallel producing non-deterministic results,
which do not necessarilydenotea single formula.

FOL is a faithful extensionof CPL. Indeed, all the additional axiom
sthemasand rule above have only to do with the newly introduced quarti er.
Al19 says that properties of particular elemens follow from the general case
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covering all the elemeits of the domain. Moreover, A20 sas that if a generic
property guararteesfor eah elemen of the domain another property, so does
it guarartee that the whole domain enjoys the same. R5 is the universal gen-
eralisationrule. To seethat this is a faithful extensionof CPL, rst note that

there is a functor F : Sig°"* ! SigF°" sud that, for eacr  in obj Sig°"",

Funct(F()) is empty and ead p 2 E°"-() is isomorphically mapped into

F(p) 2 PredF ()) with arity (F(p)) = 0, and that also maps propositional

morphismsaccordingly Compositional application to the symbols in eah ex-

pressionlifts F to another functor betweenthe respective categoriesof theories.
Each theory Th () in obj Th"" is interpreted into rst-order logic because
none of the theoremsin Th () islostin the translation. This interpretation

is alsofaithful becausewhen we restrict the languageof a rst-order theory to

the co-domainof F, it is necessarilythe image of a theory in CPL. Note that

CPL is faithfully embeddedinto PLT L, which in turn is similarly enbedded
into PBTL, but in those caseghe enbedding functors are trivial.

Applying the precedingfunctor to the theoriesspeci ed in Section2.3, we
obtain a set of examplesof rst-order theories. In examplesrequiring the full
expressienesf the logic, we assumethat freevariablesin axiomsare implicitly
universally quarti ed. In practice, howewer, F OL doesnot seemto be adequate
to support the design of extensible systems. We need equality to deal with
idertity and the temporal connectivesto recover direct accesgo time without
resortingto any form of coding. Becauseof thesereasonswe shall postponethe
presenation of additional examplesto Chapter 3.

2.6.1 Many-Sorted Logic with Equalit y

The exampleswe have provided point to the fact that the real world can be
organisedin collectionsof similar objects. Identi cation card numbers, message
tags and others are instancesof this idea. To be e ective, this classi cation of
the universein domainsrequiresadditional support for de ning similarity and
sameness.These can be treated within a logic where the notions of sort and
equality are madea logical part of the formalism, as de ned below:

De nition 2.6.2 (Many Sorted First-Order Logic) The enailment system
of many sorted rst-or der logic with equality, M SF OL, is de ned as follows:

Sig"®f°" = Sig"®"  FinSet sud that there exist:

1. Predand Funct asde ned in FOL, and Sort : Sig"*"°- ! FinSet
assigningead signatureto a set of sort symbols disjoint from those
of predicatesand functions;
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2. Type a map assigningead  in obj Sig"°"°" to a type signature
(type’red: typd "), ead type itself a function with dom type’"ed
def Pred), dom type Ut def Funct() and cod type’red def
Sort() ¢y, cod type " def Sort() ¢, ! Sort(). We usually
drop the indexesfrom ead ty peand put arity (p) <f len (domty pg(p));

LvsFor = LFoL [ f=g sudh that there is a functor Class : Sig" °f°" !
Set' assigningeadh in obj Sig"*"°" to a partial classi cation func-
tion Class() : Vv¥sF°t I Sort(). For s 2 Sort(), VYsFor def

fx 2 VMsFotiClass()( Xx) = sg, the set of s-classi ed variables;
For eadh in objSig"°f°", E"sFot() defPred) [ Funct();

For eathh in objSig"*"°" ands 2 Sort(), wewrite asTerm() s the
set of s-classi ed terms de ned as follows:

ft2 Term() jt2 V"37°" _ codtypg(t) = sg

Moreover, Atom() is rede ned as follows:
AMSFOL »-= AFOL J TFoL = TFoL
- ; ;

The following conditions are respectively addedto the de nition of Free
and [ ] for FOL, providing ft;;t,g Term() s for somes 2 Sort():

Fregt; = ty) & Freqt;) [ Fredt,)
(t1 = to)[gnr] def to[gnr] = to[qnr]

We alsousethe following abbreviations:
(D13-NEQ) t; 6 tp %ef: (13 = to);
(D14-UNI)  9Ix p[x]fOx (p[x]~ 8y ply]! x=1y).

For eadh in obj Sig"*"°", the ertailment relation * " sF°t is generated
by the proof calculus of FOL together with the following one, provided
that they are both stated over G"s7°-(), that ft;t;;t,g Term() ¢ for
somes 2 Sort(), that p2 Atom() andthat q2 Expr():

(A21-EQ) I'MSFoLt =t
(A22-EQ) I""*7°"t; =t ! (pfantig! pf gntzQ). u
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That is, the similarity type of rst-order signaturesis extended with typing
information basedon sets of extra-logical sort symbols. Terms and variables
are classi ed accordingly Equality is included as a logical symbol, for which
the axiomatisation above is standard. The only exceptionis perhapsthe use of
the substitution relation in A22 to allow the proof of theoremslike x = y !
(a(x;y) ! a(y;x)), a2 Pred ), fx;yg V“sF°- which are not provable con-
sidering an axiomatisation basedon the usual substitution function. Sernadas
et al. (1995) adopts the samenotion. Togetherwith A21, which assertsthat
equality is re exive, the other characteristic properties of equivalencerelations,
symmetry and transitivit y, are provable as stated in Appendix I.

It is easyto seethat F OL canbefaithfully embeddedinto M SFOL. More
interestingly, we can also obtain a similar embedding in the opposite direction.
De ne a functor M : Sig"°®"°" I Sig"®°" sud that, for ead signature in
obj Sig"*°"°", eah symbol p 2 E"SFeL() [ VMsFot [ f=g is isomorphically
mapped into animagein E*°-(M ()) with the samearity. So:

X 2 VMSFOL) M (x) 2 VFOL;

f 2 Funct() ) M (f)2 Funct(M ()) * arity (M (f)) = arity (f);
a2 Pred) ) M (a)2 PredM ()) ~ arity(M (a)) = arity (a);
s2 Sort() ) M (s)2 PredM ()) ~ arity(M (s)) = 1;

M (=) 2 PredM ()) " arity(M (5)) = 2.

M lifts to a functor between the respective categoriesof theories by compo-
sitional application to M SFOL expressionsobeying what follows, provided
fp;gg G"sF° (), fty;t,g Term() sfors2 Sort() andx 2 VVSFor:

M (t1 = tz) €M (=)( M (t1); M (t2))

MGp) %M (p)

M(p! q €M(! M(@

M (8x p) %«f8M (x) M (Class()( x))(M (x))! M (p)

To seethat this is also a faithful embedding, supposethat the restriction of a
rst-order theory to the languageof the codomain of M cortains a sertence
which is not in the image of any M SF OL theory. This is a cortradiction since
we know that any sud FOL theory can be faithfully embeddedinto M SFOL.
The existenceof both faithful embeddingsmeansthat theselogics are equally
expressie. So,what is the reasonfor introducing many-sorted logic with equal-
ity?



2.6. ClassicalFirst-Order Logic 61

Sorts are a widely recognisedvay of making sertencesmore readable(van
Dalen 1994). The justi cation of logical equality is more subtle and hasto do
with A22 and alternative sdhemas. Assumeour interest in specifying a prob-
lem involving an idertit y relation and at least one binary predicate symbol. To
represen the characteristic properties of the relation is easyboth in FOL and
M SFOL: in the rst casethey canbe capturedthrough three universally quan-
tied axiomsand nothing is neededin the secondcaseby adopting the logical
equality. On the other hand, to capture the substitution instancesgeneratedby
the idertit y may be moredemanding. Again, this is no di cult y for many-sorted
logic with equality asbeing supported by the aforemenioned schema. Howe\er,
in the caseof FOL we would needto include in nitely many axiomsin the
speci cation. This is due to the impossibility of relying on equivalert terms to
make substitutions (recall that replacemen rules are derivable in both logical
systemsbut they demandlogically equivalert formulas as premises). Therefore,
the problemis nitely axiomatizablein M SF OL but not in F OL, meaningthat
it cannot be represeted by a speci cation in the senseadopted here. For the
sale of generality, we prefer the former logic.

It appearsto be important to mertion that the logic above, as an exten-
sion of unsorted classical rst-order logic, doesnot su er from the pathological
anomaly of the similar extensionbasedon equationallogic, namelythe unsound-
ednesof the extensionidenti ed by Goguenand Mesegue(1981). The anomaly
appearsin many-sorted equational logic becausesort synbols denoting empty
setsareallowed. It is easyto seethat this is not the casein classicalmany-sorted
logic as a consequencef the following theorem:

Theorem 2.6.3 (T otal terms) Given a signature in obj Sig" " °", the ax-
iom schemabelow for any t 2 Term() is provablein M SFOL:

(NV OID) ["“sF°t9y t =y (terms do not havea partial interpretation).

Proof:

1.t=t A21-EQ

2. (t=1t"! :(t=1) DOUB

3. (G (=t @g=t)! @g=t! = (t=1)) A3-N

4. t=t! = (t=1) R1-MP 2,3
5. 5 (t=1) R1-MP 1,4
6. 8y :(t=y)! :(t=1) Al19-8
7. By :(t=y)! (@=t)! ¢ (t=t)! 8y :(t=y)) CONP

8. . (t=t)! 8y :(t=y) R1-MP 6,7
9. 8y :(t=Yy) R1-MP 5,8
10. 9y t=vy D12-9 9 M (NV OID)
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2.7 First-Order Temporal Logic

We have nally readeda point whereit is possibleto introducea really expres-
sive rst-order temporal logical systemto support software speci cation and
veri cation. To assesshe power of sud a formalism in practice, it su ces to
mertion that it cansupport the represetation of concurren object systemswith
a variety of value-passingnodesof interaction. It would appear straightforward
to conmbine PBTL and M SFOL in away which de nes how the temporal con-
nectives interact with the rst-order quarti ers. Howewer, sud a combination
presupposesmarny delicate decisions.We chooseto de ne our rst-order linear
time entailment systemas follows:

De nition 2.7.1 (Man y-Sorted Linear Time Logic) The enailment sys-
tem of many-sortel linear time logic, M SLT L, is de ned asfollows:

Sig"*®"t = Sig"®"°"  FinSet sud that there exist:

1. Pred Funct and Sort asin M SF OL, with PredrenamedasAct (for
action synbols), and there is an additional forgetful functor Attr :
Sig"®"" I FinSet which assignseadh in objSig"®'"* to a setof
attribute symbols, disjoint from those of actions, functions and sorts;

2. Type asin M SFOL, assigningeadh  in objSig"*'"* to atype sig-
nature with a new componert type®™ with domtype™" def Attr ()
and cod type™ def Sort() ,, ! Sort();

MSLT L — M SFOL PLT L -
L =L [ L ;

Foreahh in objSig"®" ", E"s"H() def Act() [ Funct() [ Attr ();

For eahr in obj Sig"®*""", Term() s for s 2 Sort() and G"s-" ()
are (re)de ned by T¢'**" - and F"*°"t asfollows, providing x 2 V"5t
f 2 Funct() with type(f) = hsy;:::;smi ! sandg 2 Attr () with

type(g) = hsy;:ii;shi ! s

TM SLT L o= XJ f(TM SLTL ----- TM SLT L) J g(TM SLTL ----- TM SLT L
s .
FMSLTL = FMSFOL J bng (FMSLT L)V(FMSLT L)
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The following casesare addedto the de nition of Freeand|[ ] respectively:

Free(g(ts ::;tn) & fFredt)il i ng;
forg2 Funct() andarity(g) = n
Freep.V p) ®f Fregpy) [ Fregp,)

forg2 Attr () andarity (g) = n
(PVp2)lanr]  4ef (pafanr])V (p2[anr])

For eah in obj Sig"*®'" ", the ertailment relation ~ "' - is generated
by the proof calculi of M SFOL, PLT L and the following one, provided
that they are all stated over G"*-"-(), wherein p and g are included,
that x 2 VMstTt with x 62Fredq) and fty;t,g Term() s for some
s2 Sort() aresud that no attribute synbol appearsint;, 1 1 2:

(A23-9V) "MStTE(9x p)Vg! 9x pVgq;
(A24-EQG) [T MSLTL ty = 15! G(tl = tz);
(A25-NEQG) """t 6 t,! G(t; 6 ty). 0

We considerthat, while some of the synbols in ead signature remain with
the samerigid interpretation adoptedin classical rst-order logic, someothers
acquirea exible, temporalisedmeaning. Sort and function synbols always have
the samedenotation regardlessof the momert or the behaviour in which they
are evaluated. Predicates, on the other hand, now called actions, are to be
understood as represeting the occurrenceof instantaneouseverts. Note that
the extra-logical, immediate character of actions herein di ers fundamertally
from that of TLA (Lamport 1994),whereactions are abbreviational de nitions
of transitional formulas. We alsoinclude in eat signature an additional set of
exible function symbols, attributes, to represem instantaneousstate. Families
of state symbols with slightly distinct de nitions appear in the literature as
rigid constaris (Andrelka et al. 1995), attribute symbols with empty domain,
and global variables (Manna and Pnueli 1983, Lamport 1994), symbols as in
VMstTL with a temporalisedinterpretation.

Taking into accoun the possibility of having variables, sort, function and
predicate symbols with rigid or exible interpretation (note that in our casewe
have families of function synbols in both categories)or even absen in a logic,
and consideringmoreover that it may be reasonableto prevert quarti cation
over somefamilies of variables, it is not too di cult to concludethat the number
of conceiwable logicsobtained by combination of thesecasess higher than 250.
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Most of these are almost identical or uninteresting. In someother casessut
asfor exible sortsthe axiomatisation of the correspnding interpretations be-
comesoverly complicatedfor practical application. Apart from the formalisms
already proposedin the literature aiming at the designof concurren systems,
it may be worthwhile investigating a logic formulated with rigid and exible
predicatesaswell asfunctions, with the purposeof capturing in a more natural
way with the additional rigid symbolsthe persistert schemasand static integrity
constrairts usually found in databasesystemapplications. We shall not explore
this alternative formulation any further here.

The languageof M SLT L is sud that terms, atoms and formulas are con-
strued almostasin M SFOL. In particular, we do not adopt Xt asaterm in the
way proposedby Mannaand Pnueli (1983)and later generalisedoy Fiadeiro and
Sernadaq1990)sinceit is not clearif the expressie power of the logic increases
at all. The proposedaxiom sthemascapture the choicesdescrilked above. A23
is a Barcan formula saying that quarti cation domains do not vary with the
passingof time. It is dueto Mark Reynoldsin this form, which ertails the more
convertional 8x G(p)! G(8x p). Note its similarity with A16, although in
that casethe cornverseis not valid. A24-5 sa that terms which do not include
attribute synbols are rigid. Becauseof the side condition in thesesthemas,we
loosethe substitutivit y property which would allow usto substitute sertencesby
logically equivalert onesin any cortext. Although we have already introduced
linguistic support to write frame axioms, which may require, for instance, that
only the actions of an object changethe value of its attributes, we postpone
their de nition until Chapter 3 where we shall study an object-basedapproadt
to extensiblesystemsdesign.

The formalisation of the choicesabove concerningthe interpretation of
signature synbols can be carried forward in an analogousway to branching
time asde ned below:

De nition 2.7.2 (Man y-sorted Branc hing Time Logic) The erntailment
systemof many-sorted branchingtime logic, M SBTL, is de ned asfollows:

SIgM SBTL - SIgM SLT L.

MSBTL — M SLT L PBTL
L =L [ LPeTE;

MSBTL — M SLT L -
E =E ;

Foreah in objSig"®®™, G"S8Tt() isde ned by F"s&™ asfollows:

FMSBTL = FMSLTL J A(FMSBTL)
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The following conditions are addedto the de nition of Freeand [], re-
spectively, providing p2 G"s-"():

FreqAp) ¢f Fredp)
(A py)[anr] & A (pi[gnr])

Foread in objSig"®®™, the ertailment relation * " & is generatedby
the proof calculusof M SLT L together with the following one, provided
that they are both stated over G?™ (), wherein p is included, that
X 2 VMsBTL and fty;t,g Term() ¢ for somes 2 Sort() are sud that
no attribute symbol appearsint;, 1 i 2:

(A26- 8A) I"M°BT-8x Ap! A(8x p);
(A27'EQA) | MSBTL 1=t ! A(tl = tz) ]

A26 and A27, respectively, play the rolesof A23 and A24-5 with respect to
the lesscomplexbranching modality.

We arenow in a morecomfortableposition to study the requiredadditional
reasoningprinciples to support the veri cation of livenessproperties. As is
well known, due to the fact that the set of safety properties is closed under
intersection (Alp ern and Sdneider 1985),it is not possibleto verify a liveness
property basedonly on a set of safey hypotheses. For this reason, liveness
properties are usually stated aspart of the axiomsin ead given speci cation or
can be derived from particular fairnessassumptionsmadein the axiomatisation
of the temporal logic. In Chapter 3, we shall explorethesepossibilitiesto start
the veri cation process.

It is alsofundamertal to be ableto producederivations of livenessproper-
ties from previously veri ed ones. The so-calledlattice principle, introducedas
a proof method by Owicki and Lamport (1982) and adoptedasa basicinference
rule in (Manna and Pnueli 1979,Lamport 1994),appearsto be the most general
way of supporting sud derivations. Essetially, basedon the premisesthat is
a well-foundedbinary relation and that a property p of a genericelemen x im-
plies either another distinguished property g being obtained or another elemen
y related to x being found with the property p, both facts related to the future,
the rule allows oneto infer that the existenceof an elemen with the property
p implies the occurrenceof the distinguished property g in the future. Sud an
occurrenceis ensuredby the fact that there cannot be an in nitely decreasing
chain of elemens related by , which is guararteed by well-foundedness.In
this way, at least two livenessproperties are involved in the form of a complex
premiseand a simple conclusion. This inferencerule can be stated as follows:
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(WELL) f8x (p[x]! F(a_9y y x”ply)gl">*™ (9z plz]))! Faq

Two issuesmust be treated if sud a reasoningprinciple is to be adopted:
(i) to shov how to specify and verify that somerelation is well-founded; and
(i) to shaw that the inferencerule above is admissibleconsideringa particular
logical system. The connectionbetweenwell-foundedordersand the principle of
trans nite induction with respect to their axiomatisation for temporal reasoning
was studied in detail by Kroger(1987). The requiremen in his work of an order
relation appearsto betoo strong in that transitivit y is not necessaryanywhere.
In any case,an induction schema?! remainswhich cannot be classicallytreated
usingthe nitist methodsfor software developmert requiredhere. This rulesout
the possibility of either specifying or verifying within classical rst-order logic
only that someformula de nes a well-foundedrelation.

Abadi and Merz (1996) recenly realisedthat the well-foundednes®f a bi-
nary rigid relation may be axiomatisedin sometemporal logical systems.Using
our own system,they would (pseudo)-axiomatisethis property asfollows:

(IRR) 8x :(x Xx);
(APR OG) G(8x t=x! X(t=x_t x)! FG(8x t=x! X(t=Xx))

provided an arbitrarily chosenand unconstrained exible symbol t having the
samesort asthe relation. Intuitiv ely, IRR saysthat isirre exive. APR OG
relieson t and the linear in nite discrete character of eat behaviour to assess
whether or not  has an in nitely decreasingchain. If t evertually becomes
always invariant wheneer it is bound to containing the valuesin a strictly
decreasingchain, then sud a chain necessarilyhasan endpoint sincethe value of
the term could otherwisedecreasdorever in somebehaviour. Becauseghe same
test is performed for every behaviour, since APR OG implicitly encompasses
any possiblebehariour, and for every sequenceof valuesfor t, sincethis term is
unconstrained,we can concludethat the relation is well-founded.

In order to hide the symbol t and guarartee that it is unconstrainedin
APR OG, Abadi and Merz (1996)adoptedthe quarti cation over exible logical
variablesof TLA. Here,becauseour logic wasintentionally madelessexpressie
but simplerto de ne and use,we adopt constructionsas follows:

De nition  2.7.3 (In tro duction of unconstrained exible symbol) Given
aspecication 1= ( 1; 1) in obj Pres"®®*™ sud that s 2 Sort( ;) and
2 Act(), typg )=s s, thespecication ,=( ; »)in objPres"®®™

() 8x ((8y y x! pixnyD)! px! 8x plx].
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and the morphism " > in maph Pres"**™" are an extensionof ; by ad-
dition of unconstrained exible symiwl t if the following conditions are ful lled:

t 2 Attr () with type(t) = ! (s) sud that t 62 (Attr ( 1));
» only cortains #( ;) and the following two axioms:

(FREE) 8x E(t = x);
(LIM) AG(Bx t=x! XE(t x)! EG(Bx t=x! X(t x)). O

FREE sasthat eah elemen of the respective sort may at any momert be the
value of the newly introduced exible synmbol t, ensuringin this way that t is
really unconstrained. LIM guararteesthat, if there is always a possibility to
follow an in nitely decreasingchain of elemerts related by , then there is a
behaviour in which t follows the wholein nite chain, alimit closureaxiom. The
constructionabove canberegardedasa particular instanceof the useof auxiliary
symbolsto support correctnesgproofsasoriginally proposedby Owicki and Gries
(1976)to recordpart of the history of ead behaviour. In particular, the auxiliary
symbol t is introducedherejust to support the proof of well-foundednesut is
not neededn (and is actually hidden from) the original speci cation and canbe
discharged afterwards. This is possiblebecausethe morphism in our de nition
canbe showvn to determineboth a consenative extensionand a model expansion,
sincethe newly introduced properties are all concerningthe synbol t. So, the
extensiondoesnot really add new properties to the originally speci ed theory.

A careful reading of the literature on WELL shows that is assumed
to be an extra-logical synbol with a givenrigid interpretation. Howe\er, there
is no reasonfor preverting the relation from being de nable in terms of other
symbols nor for disregarding changesin meaning as soon as well-foundedness
is insured. More properties of software systemscould be veri ed by wealening
sud assumptions. Therefore, it seemsto be reasonableto proposea formula
r2 G'seT(), in obj Sig"®®"", to sene asade nition of ,i.e.:

X y$ rxyl

sudh that doesnot appearin r and Fregr) = fx;yg. This processcan be
mademore systematicasin the introduction of unconstrained exible symbols: a
newspeci cation is proposedcortaining in addition just the relation symbol and
its de ning axiom. The required morphism should be de ned accordingly This
morphismis automatically madefaithful in this way asrepreseting an extension
by explicit de nition of a predicate like symbol. Note that 2 Act() must
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be the casebecauseactions are the only relational symbols allowedin M SBTL
signatures.Whene\er r is written in terms of some exible synmbol, acquiresa
exible meaning. Otherwise, isrigid and no changeis requiredin the rationale
above. It is important to stressthat, should both extensionsbe necessarythe
composition of the two involved morphismsmay alsoresult in another faithful
morphism provided that the extensionby de nitions be carefully stated so as
to prevent the synbol t from appearingin the formula r. This would harm the
correctnessof the whole construction.

To assigna time-dependert meaningto  and obtain a well-foundedrela-
tion, we needto de ne formula r in sucd away that at leastiRR and APR OG
are derivable. Clearly, sud a de nition cannot involve temporal connectives
sincethe relation is supposedto asseiate elemens of a particular domain at
isolated time instants. This is called a state formula in the literature (Manna
and Pnueli 1983). Now, ewen if the meaningof may changeastime passes,
IRR ensureghat the relation is always anti-re exiv e, which is fundamerial be-
cause,if not guararteed, it would be possibleto witnessthe exible synbol in
APR OG becomingpermanenly invariant even when all the decreasingchains
of related elemetts arein nite, makingWELL unsound. To admit somechange
without harming well-foundednessye may requirein addition that ead change
presenescurrerntly related elemers, a monotonicity requiremen, and moreover
that this processof changeewertually stops, a termination requiremen. These
conditions prevert  not only from having completely unrelated meaningsin
distinct momerns but also from allowing decreasingchains which may be in-
de nitely extendedby the addition of new elemens. On the other hand, some
originally unrelated elemers may evertually leave this situation. Putting these
requiremens together, we read the following axioms:

(STAB) 8x;y x y! X(x vy)
(TERM) FG@Bxy :(x y)! XX V)

Let usdealwith the secondissuemertioned above, the admissibility of the
lattice principle. It is not dicult to seethat the inferencerule WELL would
be derivable if the following axiom schemawere alsoderivablein M SBTL.:

8x (F(pIxD! 9y F(y x7ply)! 8z : F(pz]) (2.7.1)

For arigid relation symbol, this schemais equivalert to that of trans nite induc-
tion, which is known to lack a nite axiomatisation within classical rst-order
logical systems(Ryll-Nardzwski 1952). To seethe equivalence,remove  from
the context of the secondtemporal connective above basedon the assumption
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that this symbol is rigid and put q[x] 4f: F(p[x]). The resulting sertence is
equivalert to Tl . Consideringthe exible case,we could have somehope to
shaw that (2.7.1) is derivable since rst-order temporal logical systemssud as
M SBTL which possess linear in nite discretetime dimensionare able to in-
terpret minimal arithmetic (Abadi 1989)and thus mathematical induction can
be made available. Howewer, Gertzen (1943) proved that full trans nite induc-
tion is not derivablein any rst-order arithmetical system. This is eventrue for
somede nitions of the standard ordering of the natural numbers as shovn by
Troelstra and Sdwichtenberg (1996). As a consequencef theseimpossibility
results, we could concludethat WELL is not derivable in any case.

Studying this situation, howewer, we can seethat there are ways of over-
comingthe problem. Much in the way that temporal logic canbe usedto provide
a (pseudo)-axiomatisationof well-foundednessthe sametechnique of extending
the given speci cation with an unconstrained exible symbol can be usedto
support an admissible proof rule having the schema above as the conclusion.
So, becausewe can extend our logical systemwith sud an admissiblerule, the
negative results mertioned above are not really restrictive. Gabbay (1981) uses
the sameidea of introducing new symbols in derivations in order to prove com-
pletenessof many propositional temporal logical systems. Here, the respective
rule is stated as follows:

Prop osition 2.7.4 (Admissibilit y of INTR O) Assumethat s 2 Sort(),
t2 Attr () with type(t) = ! sand 2 Act() with typg )=s sfora
given in objSig"°"™®". The following inferencerule is admissiblein M SBTL.:

(INTR O) 1. IRR 4. APR OG
2. STAB 5. FREE
3. TERM 6: LIM

8x (F(pxD)! 9y F(y x”~plyD)! 8x :F(p[x])

Notethat INTR O, arule for introducingt in derivations, hasthe axiomsstudied
above as premisesand (2.7.1) asthe conclusion. If we can adopt this inference
rule as part of our proof calculus, we can shov that WELL is derivable. We
postpone this admissibility proof until Section2.9, calling the extendedlogical
systemM SBTL™.

Theorem 2.7.5 (Admissibilit y of WELL) Assumethat s 2 Sort(), t 2
Attr () with typeg(t) = ! sand 2 Act() with typg ) = s s for
agiven = ( ;) in objPres"s™"  Provided that FREE , LIM , IRR ,
APR OG, STAB and TERM are derivable considering these symbols, the
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following inferencerule, for fp;qg G'S®™" () and x 2 VVs8T" sud that
X 62FredQq), is alsoderivablein MSBTL™*:

(WELL) f8x (pIx]! F(a_9y y x"pyh)gl">*™ (9z plz))! Fq.

Proof: We follow the structure of the proof deweloped by Kroger(1987). Essen-
tially, we needto substitute the useof the trans nite induction in his work by
an application of the inferencerule proposedabove:

1. 8x (pix]! F(a_9y y x” plyl) Ass
2. G(p[x]! F(Q_9y y x”™plvD) A19- 8, R1-MP 1, R2-G
3. F(pix])! FF(g_9y vy x”ply) MON-GF ,R1-MP 2
4. FF(q_9 y x"plyD! F(@_9 y x”ply]) IDEM-F
5. F(pixD! F(a_9% y x”plyl) HS 3,4
6. F(a_9% y x”"plyD! Fa_F@Oy y x”ply]) DIST-ORF
7. F(pixD ! Fa_F@y y x”plyl) HS 5, 6
8 FOy v x”"plyD)! Fg_9y F(y x”plyl) BAR C-F, OR-R
9. Fq! Fg_9y F(y x”"ply]) REFL , OR-R
10. Fq_F(y y x”"plyD! Fg_9y F(y x”ply]) OR-L 8,9
11. 8x (F(p[xD! Fgq_9y F(y x” plyD) HS 7, 10; GEN- 8
12. F(p[z]) ! Fq INTR O, R1-MP 11, A19- 8, R1-MP
13. p[z]! Fq REFL , OR-R , D8-F , HS 12
14. (9z p[z])! Fq GEN- 8 13, EX C-89, HS M (WELL)

The application of INTR O is very demanding. We have to obtain be-
forehandall the special purposeaxiomsstudied in this section. When the given
relation is rigid, we cansimplify this processy showving that STAB and TERM
follow from the rigid interpretation of . The theorembelow allows usto gen-
eralisein time all the sertenceswritten only in terms of rigid symbols:

Theorem 2.7.6 (Invariant rigid form ulas) The axiomsdemabelow is prov-
able in MSBTL for any seriencep 2 G"*®™-() \ S*, where S is the set
SdefyMseT- [ Funct() [ (L“SF°- fbegg), forany in objSig"*®"":

(RIGID) I'“s*"'p! Gp.

Proof: We rst examineatomic formulas and then proceedby structural induc-
tion on G"*87-(). Without attribute and action synbols in the underlying
language,the possibleatomic formulas can only be equality tests of the form
p (ty =typ), for fty;t,g Term() s, s2 Sort(). But we have A24 which
ensuresp! Gpin this case.For the induction we have the following cases:

P - Q
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1. (g! ?)! G(q! ?) Ind. Hyp.
2. :q! (q! ?) NEG-L , PERM , R1-MP , D2-?
3.:q! G(q! ?) HS 2,1
4. (g! 2 )! (9! ?)! :9 NEG-R , PERM , R1-MP
5 q! > Al-l , D1->
6. (q! q! (q! Q) DOUB , A3-N , R1-MP
7. g! ? D1->,D2-? 6,HS 5
8. (q! ?2)! :q R1-MP 4,7
9. G(gq! ?)! G(:q R2-G 8, MON-G , R1-MP
10. : gq! G(: 9 HS 5,9
p q! r:

1. :q! G(Go Ind. Hyp.
2. r! Gr Ind. Hyp.
3.:q_r! G(qg_Gr OR-R 1,0R-R 2,0R-L
4. G g _Gr! G(Gqg_rnr) DIST-ORG

5. :q_r! G(Gqg_r) HS 3,4
6. :: q!' ! GG q! ) D3-OR 5
7. (q! ! ¢:oq! or) DOUB , RTRAN , R1-MP

8. (q! r)! G(G: q! r) HS 7,6
9. q! = q DOUB , A3-N , R1-MP

10. (! = ! (G2 gl ) (q! r)) LTRAN

11. ¢ g! ! (q! r) R1-MP 9, 10
12. G(G: q! )t G(q! r) R2-G 11, MON-G , R1-MP

13. (g! r)! G(q! r) HS 8, 12
p 8x «

1. q! Gq Ind. Hyp.
2. 8x (q! G0 GEN- 81
3. 8x (q! Gqg! (8x g! 8x GQ) MON- 8
4. 8x q! 8x Ggq R1-MP 2,3
5. 8x Gg! G(8x 0 BAR C-G
6. 8x q! G(8x Q) HS 4,5
p qVvr:

1. q! Gq Ind. Hyp.
2.?20 REFL , NEG-L , R1-MP , D2-?
3. Xq! qvr R2-G 2, A4-GV , R1-MP , D7-X
4. GXq! G(qVvr) R2-G 3, MON-G , R1-MP

5. GGqg! GXq RPL-GX , R2-G , MON-G , R1-MP

6. Ggq! GXq IDEM-G , HS 5
7. q! G(qvr) HS 1, 6; HS 4
8. G(q! G(gqvr)) R2-G 7
9. Xq! XG(qVvr) MON-GX , R1-MP 8
10. G(G(gvr)! qvr) REFL-G , R2-G
11. XG(qVr)! X(gVvr) MON-GX , R1-MP 10
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12. Xq! X(gqvr) HS 9, 11
13. gvr! X(g_r”"qvr) FIX-V

14. X(q_r~qvr)! Xg_X(r~qgvr) A9-V , D7-X
15. Xr~2 X(qvr)! X(qvr) REFL , AND-L

16. X(r~qgVvr)! X(gVvr) DIST-ANDX , R1-MP 15
17. Xq_X({r~qgvr)! X(qgvr) OR-L 11,16
18. gvr! X(gVvr) HS 13,14;HS 17
19. gVr! G(qvr) R1-G 18,A10-G , R1-MP

p AqQ

1. q! Gq Ind. Hyp.
2. A(q! Go R4-A 1
3. Aq! AGq A13-A , R1-MP 2
4. AGq! GAq COM-A G
5. Aq! G(AQ) HS 3, 4H (RIGID)

Let us recall the main purpose of the proposition and theorems above.
We wanted to establish a designdiscipline to support the veri cation of live-
nessproperties. Now we can sa it consistsin the following steps: (i) if nec-
essary extend the given speci cation with the relation symbol and a suitable
explicit de nition; (ii) extend the speci cation with an arbitrarily chosenun-
constrained exible symbol via a faithful morphism; (iii) derive IRR , APR OG
and alsoSTAB and TERM if required; (iv) derive the livenessproperty based
on WELL . All these stepsare justied by the previousresults. A complete
examplewill be provided in Chapter 3.

Someauthors attempt to deal with the problem above in distinct ways.
Lamport (1994)adoptsa basicinferencerule for well-foundedinduction but does
not explain in full detail how the required premisein the rule is to be obtained.
Abadi and Merz (1996)sketch a solution adopting the quarti cation over exible
variablesof TLA, which is known to increaseconsiderablythe expressie power
of any temporal proof calculus. On the other hand, it is not clear how this and
the other logical connectivesarerelated. Andreka et al. (1995) prefersto adopt a
structural induction sdhema over so-calleddata-domains,which are speci ed in
non-standard rst-order temporal logic. All theseauthors have only considered
the casein which arigid relation synmbol is given.

2.8 A Particular Mo del Theory

Sematiic modelsfor branching time sud astransition systemsand ewvent struc-
tures abound in the literature. The following de nition is of the rst kind:
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PBTL
> z
Z
Z
Zz
PLTL MSBTL
> ZZ >
Z
CPL MSLTL
Z 6
Z
Zz
FOL — M SFOL

Figure 2.14: Faithful logical systemembeddings.

De nition 2.8.1 (Branc hing Time Structure) A branchingtime structure
or frameisatuple ( , o, , ) where:

and are setsof worlds and initial worlds respectively;
I P () isthe accessibiliy relation (a powersetfunction);

is a non-empty set of possiblebehaviours. Each L 2 is a function
sud that'?: (i) domL andcod L ¢ N; (i) L(w)=0i w2 g (i)
8w;wl2 domL L(w)=LW9)! w=wC(iv) 8n2 codL 9w 2 domL
L(w) = n; and (v) 8w;w°2 domL L(w9 = L(w)+ 1! wl2 (w). [

The sequencesf worlds which determinebehavioursin  (not necessarilyof any
computer program) are in a oneto one correspndencewith the set of natural
numbers, accordingto (iii) and (iv). Hence,eat L 2 s invertible and we
shall usethis fact to de ne the meaningof A. It is alsoin this semariic way
that problematic cyclic ows of time are avoided. Concerningthe semaric
assumptionsover branching time structures proposedin the literature, it is easy
to seethat pre x (Stirling 1992),su x and fusion (Emerson 1983) closuresdo
not follow from our de nition.

Basedon branching time structures, signature synbols are interpreted as:

De nition  2.8.2 (In terpretation  Structure) An interpretation structure for
asignature isatuple = (T, U, G, A) where:

12Recall that we deal with ! -long behaviours only, as explained in Section 2.4.



74 Chapter 2. Proof Theory and Software Developmern
T is a brandhing time structure;

U mapseadh s 2 Sort() to a non-empty collection sy and ead f 2
Fun() with typegf) = Isy;:::;s, ! sto afunction fy @ s
Sny I sy,

U

G mapsead g 2 Attr () with type(g) = hsy;:::;s. ! s to afunction
G(g) :s1, it Sp, ! I sy

S, i Sn, ! P(). [

We adopt the interpretation structures above as models of logical formulas. As
a result, whenewer a formula has a model, the setsof worlds and 4 in the
underlying frame are not empty. Note how appearing as an argumen in
the interpretation of somesynbols is related to their exible, time-dependen
meaning. Interpreting synbolsin Act() particularly shownsthat the respective
actionsmay happenin parallel amongthemseles,in which casethis is speci ed
through the conjunction of their symbols, or with respectto other actionsin the
ervironmert. This is much in keepingwith the open but not necessarilyinter-
leaving semartics proposedin (Barringer 1987, Fiadeiro and Maibaum 1992).
The notion of reduct of a model along a signature morphism will alsobe useful
in our subsequeninvestigations:

De nition 2.8.3 (Reduct of a model) Given ;! » in maph Sig"*® ™t
and an interpretation structure , = (T,, Uy, Gy, A) for 5, the model ; =
(T, U, G,  , A, )iscalledthe -reductof ». ]

We interpret terms asde ned belon. Becausewne have a rst-order logic, it
is rst necessaryo de ne how logical variables(which are not speci ed aspart of
signatures)are assignedo the elemens of quarti cation domains. Assignmets
are alternatively called valuations

De nition  2.8.4 (Assignmen t) Givenan interpretation structure for a sig-
nature , anassignmentN for mapsead setClass() s to sy. ]

De nition  2.8.5 (In terpretation of Terms) Given an interpretation struc-
ture = (T, U, G, A) for asignature andanassignmenhN for , the function
™ : ! sy dened asfollowsis aninterpretation of termsof sort s 2 Sort()
at aworld w 2

[x] ™ (w) def N (x) if x 2 Class() s;
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[o(ts; o5 t)] ™ (w) & (G(a)([Mtad ™ (w); 2255 Tta] ™ (W)))(W). O

We have said that the branching modality of our logic is to be interpreted
with the help of an equivalencerelation over behaviour pre xes. We de ne sut
arelation in a pointwisemanner,in terms of the equivalenceof worlds composing
the possiblebehaviours of a structure, as follows:

De nition  2.8.6 (Equiv alent worlds) Two worlds fw; w% of a branch-
ing time structure T = ( ; o;; ) in aninterpretation = (T, U, A, G) for a
signature  are saidto be equivalent w' w© if and only if

892 Attr () 8X1;:ii;Xn G(Q)(X1i:ii;Xn)(W) = G(Q)(X1: 115 Xn)(WO
8a2 Act() 8XyiiiiXa W2 A@(XyiiniXn), WC2 A@)(X115Xe) [

Indeed,’ is an equivalencerelation being re exive, symmetric and transitive

dueto the equality and the biconditional in the sertencesabove. Sincewe choose
the usualinterpretation of logical formulas below, it is not di cult to conclude
by induction that equivalert worlds satisfy the sameset of state formulas, those
formedout of variables,signaturesymbols and classicalconnectivesonly. Hence,
two behaviours are consideredo be equivalert up to a givenmomert if and only

if they have identical past histories, i.e., they satisfy at ead previous momen

the sameset of su formulas. This is again an equivalencerelation because
of the sameproperty of ' . Note that theseinternal notions of equivalenceare

di erent from the usual external notion of zig zags(van Benthem 1984)because
they relate statesand behaviours of a model asopposedto the relations between
models, interpretation structures, de ned by zig zags.

We usethe above to de ne the satisfaction of logical formulas:

De nition 2.8.7 (Satisfaction of Formulas) Given a signature , the sat-
isfaction of a -form ula at world w; of a behaviour L (i.e., w; 2 domL) by a
structure = (T, U, G, A) with assignmeh N is de ned asfollows:

S2. ( ;N;L;w;) F : pi it isnotthe casethat ( ;N;L; w;) F p;
S3. (;N;Liwi) F p! qgi (;N;Lyw) F pimplies( ;N;L;w) F g

S4. ( ;N;L;w) F 8 pi forewryv?2 codN andassignmeh N, for sud
that Ny(y) = N(y) if y & x and N,(y) = v otherwise,( ;Ny;L; w;) F p;
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S5. (GN;Liw) F (ti=t2) i [ta] ™ (w) = [ta] ™ (wa);
S6. (;N;L;w) F begi L(w)=0;

S7. (;N;L;w) F pvqi thereisw; 2 domL with L(w;) < L(w;), ( ,N, L,
w;) F pand( ;N;L; wy) F qforany we 2 domL whereL (w;) < L(wg) <
L(w;);

S8. (;N;Liw) F Api foreweryl; 2 sud that w " (L; L L) (wy) for
eah wy 2 domL with L(wg) < L(w;), ( ;N;Lj; (L L DYy(w)) E p. 0]

The de nition of satis abilit y above determinesa oating interpretation for our
logic, accordingto the terminology of Manna and Pnueli (1989). That is, the
initial instant has no special signi cance in the interpretation, even though it
is represeted asthe logical connective beg. Basedon this de nition, it is not
di cult to prove by structural induction that:

Prop osition 2.8.8 (Equiv alent worlds satisfy the same state form ulas)
Given an interpretation structure = (( , o, , ), U, G, A) for a signature

and an assignmen N for ,w' wCi for any state formulap, ( ;N;L;w) F p
i (;N;L°wWO) E pforany fL; LY sud that w 2 domL, w°2 domL% H

We de ne an ascendingseriesof degreeof validity assuggestedyy Chellas
(1980). De nition 2.8.7 correspndsto satis ability. We say that a -form ula
p is locally true in an interpretation structure = (T, U, G, A) for  at world
w of a behaviour L if and only if for every assignmetb N, ( ;N;L;w) F p.
A senrtence p, a formula sud that Fredp) = f g, is true in if and only if
locally true in ead behaviour L and world w sud that w 2 domL. We write

F p in this case. A semaric consequenceelation over amodel , E p,
is simply de ned by saying that [ qfor every serienceq?2 implies F p.
If we require this for every model, we obtain the semanic consequenceelation

F p. Completing our hierarchy, p is saidto be valid in T if and only if true
inany basedonT. A serienceis consideredto be universaly valid if and only
if it is valid in any branching time structure.

As a last word in this section, it is important to mertion that restricting
the languageand the interpretation structures above in someparticular ways
result in models of other logics studied in this chapter. For instance, if we
forget assignmets and quarti ers we obtain propositional branching time logic
models. Forgetting the branching modality and that interpretations consist of
non-emply collections of behaviours, we obtain models of linear time logic by
picking up single elemens from ead sud collection of behaviours. Models
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for classicpropositional logic are obtained by forgetting completely the time
dimensionand the respective connecties.

2.9 Some General Logical Results

Our main purposein this sectionis to shov that MSBTL is a logical system
in the precisesenseof De nition 2.2.7. We have already shown that all the
required propertiesto de ne a full ertailment systemare ful lled. Now we have
to ensurethat M SBTL determinesan institution.

We rst dealwith the problem of de ning a categoryof modelsassaiated
to ead signature. The structure of the objectsin this categoryhasalready been
de ned in Section2.8 in the form of interpretation structures. The collection
of functions admitted as morphismsin sud categoriesnormally results from
an arbitrary decisionconcerningthe particular modal logic, so we adopt here
an extended version of the so-called p-morphisms (Segelerg 1970). Given a

signature  with two interpretation structures ; = (T, U;, Gj, A;j) sud that T,
=(Ci o, i» i) 1 1 2,a rst-order p-morphism (fo-morphism for short)
1! Lisapair (y, ), where : ;! s u U ! U and yisa

model homomorphismof the classical rst-order functional calculus(recall that
predicateshave a temporalisedinterpretation here). It is important to mertion
that the following condition is required from any sud an homomorphism. For
every f 2 Funct(), s; 2 Sort(), the following diagram comnutes:

SU]_# SUz
fu U(fU) (291)
? ?
Sy, ———————— Su,
U
Moreover, for eah fp-morphism ( y, ), is required to map behaviours

onto behaviours and the following conditions must be obeyed, for every world
fwi; wi w10 2

() wi2 o) (W) 2 o,;
(i) w2 1(wi)) (W) 2 2 (s);
(i) w92 o( (w1))) Owd wp2 g(wi)”™ (W) = ws;

(vi) For eweryg?2 Attr () sud that arity (g) = n,
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(v) Forewerya?2 Act() sud that arity (a) = n,

With the de nition above, it is not di cult to ched that ASS and ID are
obtained, validating the following proposition:

Prop osition 2.9.1 (Categories of MSBTL Mo dels) The collectionsof in-
terpretation structures and fp-morphismsfor ead signature in obj Sig"*®™
determinea -indexed family of categoriesof modelsMo d" ® ™" . |

Note in the de nition of institution that eat signature in objSig"*®™
is assignedo a categoryof modelsMo d"*®™ by a cortravariant functor M od:
Sig“®®™ I Cat°. Consideringthe fp-morphismsde ned above, this functor
can be de ned asfollows:

1. Mod() defMod"®*™ for eadh in objSig"®®™";

2. Mod( : ! o) Mod( ) : Mod ,)! Mod ;) foreahr ; in

objSig"®*®*™,1 i 2,andead Sig"®®""-morphism ;
3. For eahh ;! » in marph Sig"*® ™, the following diagram commnutes
for eah ; = (T;;U;;Gi; Ai) in objMod"**™, 1 i 2, and ead pair

(X;Y) in the setf (Sort; U); (Funct; U); (Attr ; G); (Act; A)g:

Xl( 1)—'( Xl)( 1)
Y1 Y2 (2.9.2)
? ?
Y1 X)C )" moay X1)( 1)
4. Foreah ;! ,inmaphSig"*®™, | = (T;;U;Gi;A)inobjMo d"se™
Ti=(i o7 is )1 1 2andeah ;! ,inmaphMod">*™, the

following diagramcomnutesfor ead pair (X ;' ) in thesetf (U; y);( ; )g:

X1 . X,
M od( ) M od( ) (2.9.3)
? ?
Mod( )(X1 W Mod( )(X2)

The last two conditions above are to guarartee that the structure of eat cate-
gory of modelsis presened by the model functor.
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Lemma 2.9.2 (M SBTL Institution) With the de nitions provided above,
the tuple (Sig"®®™, G"°8" Mod, E"S8T") is an institution.

Proof: We only needto verify that the satisfactioncondition is ful lled. That is,
forewery 1! ,in maphSig"®*®*™,p2 G's*7-( ;) and inobjMod ,,

FYST (P, Mod )()E"S™ p

In particular, p canonly be a sertencein this assertionsincethe notion of truth
in a model asde ned in Section2.8 makesthis requiremen.

Without lossof generality, we cansketch this proof consideringthat ; and

o are the samesignature. This is due to the compositional de nition of term,
sertence and assignmenh functors and also due to (2.9.2) and (2.9.3), which
guarartee that eat category of models has an exact image along signature
morphisms. That is, the internal structure of eatc model is matched exactly
(2.9.2) and the same happensto the internal structure of ead fp-morphism
(2.9.3). Note, howeer, that more objects and morphismsmay be presen in the
sourcecategory of models and more symbols may exist in the target signature.
Thesedo not createa problem becausewe only needto work with the image of

and the respective reducts proving the satisfaction condition. The remainder
of the co-domainof thesemorphismscan be safelyignored.

Now we can dewelop the rest of the proof by a structural induction argu-
mert onthe grammar of the language.Considera xed signature with models

i = (Ti, U, Gj, Aj)) sulhthat T; = ( |, 0 i i1l i 2and ,! 1. We
wish to show that forany L, 2 , andany w, 2 domLy, ( o;N%Lo;w,) F p
for any assignmen N°for , if and only if ( 1;N; #(L.); (W) F p for any
assignmeh N for ;. This is an extensionof the well-known p-morphismlemma
in the modal logics literature (Goldblatt 1992). We examinein the subsequen
paragraphthe basecaseof the induction argumert and then proceedwith some
interesting casesof the induction step.

Givenrigid termst; 2 Term() 4, 1 [ 2, s 2 Sort(), we have
(2NCLowo) F (t = to) if and only if [ti] *™'(wo) = [to] *™ (w,). Be-
causeead t; is assumedto be rigid, their interpretations do not depend on
the underlying world. Assume in addition that ead t; is a constar, i.e.,
ti 2 Funct() sud that typgt)) = ! s, and then their interpretations
will not depend on the assignmeh as well. Due to the functionality of ,
[t:] "™ ( (W2)) = [ta] "™ ( (w2)). Hence,( 1;N; #(L2); (W2)) F (t1 = tz). The
converseis proved observingthat for constaris the homomorphism condition
(2.9.1) requiresthat [t] 2V (W) = ([ta] " (W»)). For non-rigid constarts,
case (iv) in the de nition of fp-morphism guarartees that the biconditional
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above can be obtained. This rationale easily generaliseso any kind of term
and to state formulas aswell.

Let us examine the temporal formulas. Assumethat ( ;N% Ly w,) F
beg. Linking S6, requiremernts (ii) in De nition 2.8.1and (i) in the de nition
of fp-morphism, we infer that (w;) 2 o,. Then, the rst two applied in
the inverseorder also justify ( 1;N; #(L,); (W.)) F beg. For the corverse,
supposethat ( 1;N; #(L,); (W) F begbut ( »;N%L,;w,) F beg is not the
case.The rst conjunct ensuresthat (w,) is the rst elemen in dom #(L5).
Moreover, the secondoneshavsthat 9wz 2 domL, L,(w;) = L(ws)+ 1. Using
condition (ii) in the de nition of fp-morphismsshowvsthat (w,) is not the rst
elemen in dom #(L,), which generatesa cortradiction. We conclude that
(22N%Lawy) F begi (1;N; #(L2); (Wp)) F beg. The caseof pvVqis
deweloped basedon the badk and forth conditions (iii) and (ii). The A p caseis
deweloped basedon the fact that eacx  is onto concerningbehaviours.

We have concludedthat ( ;;N%Lo;wy) F pi (1;N; #(Lo); (W) F p
forany p2 G(). Extendingthis partial result to the casewherewe have models
for di erent signatures,assumein addition that ;! 2, 1in objMod ,,
Mod( ) = and () = 1. Applying the di erent morphismsand functors
involved in this situation, we obtain ; F | #(p) if and only if , . b
Therefore,the tuple above is an institution. B (MSBTL Institution )

We turn to the veri cation of the soundnessondition in De nition 2.2.5:

Lemma 2.9.3 (Soundness of MSBTL) MSBTL is sound.

Proof: We shaw in the usual way, basedon the notion of satisfaction, that eah
logical axiom is universally valid and the application of eat inferencerule pre-
senesvalidity, meaningthat valid premisesimply valid conclusions.We preser
herethe interesting casesnly, leaving the veri cation of the remaining casedor
Appendix Il. An additional structural induction argumer on our Hilb ert-style
proofswill suce to guarartee that ead entailment presenesvalidity.

We prove that ead inferencerule in Figure 2.15 presenesvalidity as fol-
lows, assumingthat an underlying signature  with a branching time structure
T are given and alsothat the notion of satisfaction for the derived connectives
has already beenworked out. Wheneer necessarywe denoteby 2 an inter-
pretation structure which is obtained from = (T, U, G, A) by varying all the
componerts apart from the frame T.

(R1-MP) Assumethat (i) ( v;N;L;w;)) F pforany 1, N, L, w 2 domL
and (i) ( 9;N%L%wW) F p! qgforany 1, N,L andw; 2 domL. From
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Syntax: For a given signature , we have:

(Terms) T 1= x (variables) j f (Ty;:::; Tm) (functions) j g(T1;:::; Tn) (attributes)
(Atoms) A = Ts = Ts (equality) j a(T1;:::;Tn) (actions)

(Formulas) F:=Aj:FjF! Fj(F)j8x Fjbegj(F)V(F)jA(F)

De nitions:

(D1 >) >defpl p (D2 ?) ? &>

(D3 OR) (P_gE (p! 9 (D4 AND ) (p"q«': (p! :0
(D5 IFF) (P$ & (p! 9" (qa! p (D6 X) XpeEpv?

(D7 V) pUg® q_(p" qvp) (D8 F) Fp¥'>Up

(D9  G) Gp%': F(:p) (D10 W) pWq% Gp_pUq
(D11 E) Epdf: A(: p) (D12 9) 9x pdf:8x :p

(D13 NEQ) t; 6 tpdef: (t; = tp)
(D14 UNI') 9x p[x]%fox (p[x]~ 8y ply]! x=1y)

Axioms: In A20 and A23, x 62ZFredp); in A19, A24-5 and A27,
(E(t) [ E(ty) [ E(t))\ Attr () =fg; p2 Atom() in A22:

(A1 1) p! (9! p)

(A2 1) (! (@' ! (p! ! (p! 1)
(A3 N) GCp! ta! (a! p

(A4 GV) G(! 9! (pvr! qvr)

(A5 GV) G(p! 9! (rvp! rvo

(A6 V) pvag! pV(g” pvo

(A7 V) (P avp)Vp! avp

(A8 V) pvag”r rvs! (prrv(g”rs)_(prs)V(a” s)_ (g r)v(g” s)
(A9 V) (p_QVr! pvVr_qVvr

(A10 G) G(p! Xp)! (p! Gp

(A1l X) X >

(A12 Xbeg) : X(beg)

(A13 A) A(p! 9! (Ap! AQ)

(Al4 A) Ap! p

(Al5 EA) Ep! AEp

(Al6 EV) (Ep)Vqg! E(pvo)

(Al7  AU) A(p! X(qup)! (p! XA (qUp))
(A18 Ebeg) E(beg)! beg

(A19 8) (8x p[x])! p[xnt]
(A20 8) 8x (p! q! (p! 8x 0
(A21 EQ) t=t

(A22  EQ) ti=1t! (pfantig! pfantzg)
(A23 9V) (9% gQVp! 9% qVvp

(A24 EQG) tp=ta! G(t1 = tp)
(A25 NEQG ) t;6t,! G(ty 6 tp)
(A26 8A) 8x Ap! A(Bx p)
(A27 EQA ) tl = tg ! A(tl = tz)

Inferene Rules: In R5, we considerthat x 62F redp):

(R1 MP) fp;p! aqgl” q (R2 G) fpgl® Gp
(R3 begG) fbeg! Gpgl p (R4 A) fpgl” Ap
(R5 8) fp! qgl” p! 8 g

Figure 2.15: De nition of MSBTL.
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(i) and S3, we infer that ( 1;N;L;w;) F pimplies ( 2;N%L%w9) F q,
moving in this way the quarti cation over interpretations, assignmets,
behaviours and worlds to range over ead instance of the satisfaction re-
lation in isolation. Using (i), we concludethat ( $;N%L%w? E qfor any
9, N% L%and w®2 domL®

(R2-G) Assumethat ( t;N;L;w;) E pforany 1, N, L andw; 2 domL. For
a xed L, we consequetty havefor everyw; 2 domL that ( +;N;L;w;) F
p, which is equivalert to saying that ( r;N;L;w;) F Gpforany 1, N, L
and w; 2 domL, accordingto the de nition of satisfaction of Gp;

(R3-b egG) Assumethat ( +;N;L;w;)) F beg! Gpforany 1, N, L and
w; 2 dom L. In particular, for wog 2 dom L sud that L(wp) = 0, we
have ( 1;N;L;wp) F beg! Gp. An application of S3 shows that ( T,
N, L, wp) F beg implies ( 1;N;L;wo) F Gp, but the anteceden of
this conditional is evidert given S6 and the de nition of wy. From the
consequen of the conditional and the de nition of satisfaction of Gp, we
concludethat ( t;N;L;w;)) F pforany 1, N, L andw; 2 domL;

(R4-A) Assumethat ( t;N;L;w;) = pforany 1, N, L andw; 2 domL. For
a xed L, we have,foreweryL; 2 sudithat s’ (L; ' L)(w) for ead
wi 2 domL with L(wy) < L(w;), that ( +;N;Li;(L; * L)(w)) F p, based
on our assumptionand that ead L; is invertible. From S8, we conclude
that ( +;N;L;w;)) F Apforany +, N, L andw; 2 domL;

(R5- 8) Assumethat ( t;N;L;w;)) F p! qgforany 1, N, L andw; 2 domL
and alsothat x 62Fredp). So, from S3, (i) ( T;N;L;w;) E p implies
( 7:N;L;wi) E g Now, for ead v 2 cod N, de ne N, asN,(y) g N (y)
if y 6 x or Ny(y) ¢f v otherwise. Note that, becausex 62Fredp), (i)
( 7:N;L;wi) F p implies ( v;Ny;L;w) F p, by structural induction
on the notions of interpretation and satisfaction basedon the de nitions
of Free and assignmets. Substituting N for N, in (i), we obtain (iii)
( 7;Ny;L; wy) F pimplies ( 1;Ny;L; w;) F g Moving the quarti cation
over N, inwardsin (ii) and connectingthis statemert to (iii), we infer that
( ;N;L;wy) F pimplies( t;Ny;L; w;) F qfor any N, de ned asabove,
which meansthat ( +;N;L;w;) F p! 8x ((x) forany 1, N, L and
w; 2 domL by applying S3 and S4.

The universalvalidity of ead logical axiom listed in Figure 2.15is veri ed
asfollows, assuminggeneric , N, L and s; 2 domL for :
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(Al-1) Supposethat (i) ( ;N;L;w;) F pand (ii) it is not the casethat ( ,
N, L,w)fF q! p. From (ii) and S3, we infer that it is not true that
( sN;L;w) F gimplies ( ;N;L;w;) F p. So,we have ( ;N;L;w;) F q
but (, N, L, w;) F p doesnot hold, which cortradicts (i). Therefore,
( ;N;L;w;) E pimplies ( ;N;L;w;)) E q! p and we conclude that
(:N;L;ywi) F p! (9! p)usingS3;

(A4-GV) Supposethat (i) ( ;N;L;w) F G(p! g and (i) ( ;N;L;w) F
pVr ! qVr doesnot hold. From (ii) and S3, wehave ( ;N;L;w;) E pVr
but ( ;N;L;w) E gVr is not the case.According to S7, this meansthat
(iii) thereisanw; 2 domL with L(w;) < L(w;) sudrthat ( ;N;L;w;)) F p
and ( ;N;L; wy) F r for any wy 2 domL whereL(w;) < L(w) < L(w;),
and (iv) for everyw,, 2 domL with L(w;) < L(wp), ( ;N;L;wy,) F gand
( ;N;L;wy) F r for any w, 2 domL whereL(w;) < L(w,) < L(wy) are
not both true. In addition, the de nition of satisfactionof Gp, (i) and S3
leadsto (v) ( ;N;L;w;) F pimplies( ;N;L;w;) F qforany w; 2 domL
sud that L(w;) L(w;). Applying the rst half of (i) in (v), we infer
that ( ;N;L;w;) F q. For wy, = w;, when we conjoin this partial result
to (iv), we obtain a cortradiction. We conclude,from the negation of our
assumptionand S3, that ( ;N;L;wj)) E G(p! g ! (pvVr! qVvr);

(A6-V) Supposethat (i) ( ;N;L;w;) F pVg From (i) and S7, we infer that
(i) thereisw; 2 domL with L(w;) < L(w;) sudrthat ( ;N;L;wj) F p
and ( ;N;L; wy) F qgforany wy 2 domL whereL(w;) < L(wg) < L(w;).
Hence,for ead wy, sudh that L(wy) < L(wny) < L(w;), we know from (ii)
that thereisanw; 2 domL with L(wp,) < L(w;) sudithat ( ;N;L; w;) F
pand( ;N;L;w,) F gfor any w, 2 domL whereL(wp) < L(w,) <
L (w;). We conclude,usingthe de nition of satisfactionof~ togetherwith
S7 and S3, that ( ;N;L;w)) E pvq! pVv(g" pVvQ);

(A8-V) Supposethat (i) ( ;N;L;w;)) F pvg” rVs. From (i), the de nition
of satisfaction of # and S7, we infer that (ii) there is w; 2 domL with
L(w;) < L(w;) sudr that ( ;N;L;w;) F pand ( ;N;L;w) F g for any
wy 2 domL whereL(w;) < L(wy) < L(w;), and (iii) thereisw, 2 domL
with L(w;) < L(w;) sudh that ( ;N;L;w) F r and( ;N;L;wy,) F s for
any Wp 2 domL whereL(w;) < L(wm) < L(w). Let w, = min (w;;w,).
It is easyto seefrom the secondhalf of (ii) and (iii) that ( ;N;L;w,) F g
and ( ;N;L;w,) F r for any w, 2 domL whereL(w;) < L(w,) < L(wy,).
Now, if w; = w;, from the rst half of (i) and (iii), there is an w, sud
that ( ;N;L;w,) F pand ( ;N;L;w,) F r. Alternatively, if w; < w,,
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from the rst half of (i) and the secondhalf (iii), there is an w, sud
that ( ;N;L;wy) F pand( ;N;L;w,) F s. Otherwise,( ;N;L;w,) F Q
and ( ;N;L;w,) F s. Many applications of the de nition of satisfaction
of ~ and _ together with S7 allow us to concludethat ( ;N;L;w;) F
pvagr rvs!t (phrr)v(g” s)_(p" s)V(g” s)_ (g” r)V(g” s);

(A10-G) Assumethat ( ;N;L;w;) F G(p! Xp). The de nitions of satisfac-
tion of G and X imply (i) for any w; 2 domL sud that L(w;) L(w;),
( sN;L;wj) F pimplies( ;N;L; we) F pwhereL(wy) = L(w;j)+ 1. Also
assume(ii) ( ;N;L;w;) F p. By mathematical induction on i using (ii)
and (i), we infer that ( ;N;L;w;) F p for any w; 2 dom L sud that
L(w;) L(w;). Therefore, using the de nition of satisfaction of G and
S3, we concludethat ( ;N;L;w)) F G(p! Xp)! (p! Gp);

(A12-Xb eg) From S6, it isclearthat (i) if ( ;N;L; w;) F begthenL(w;) = 0.
Moreover, the de nition of satisfactionof X saysthat (i) ( ;N;L;w;) F
X(beg) implies ( ;N;L;w;) F beg sud that L(w;) = L(w;) + 1. Con-
sideringthat (ii) implies (i), we reac a cortradiction and concludein this
way that ( ;N;L;w;) F : X(beg) dueto S2;

(A13-A) Accordingto S8, ( ;N;L;w;) F A(p! q) implies ( ;N;L;;(L; !
L)(wi)) F p! qforany L; which agreeswith L on the state formulas
satis ed up to j. Using S3, we caninfer that ( ;N;Ly; (L, L)(W)) F p
implies ( ;N;L;;(L, * L)(w)) F g, moving in this way the quarti cation
over behaviours to ead instance of the satisfaction relation. Therefore,
basedon S8 and S3, we infer ( ;N;L;w;) F A(p! ! (Ap! AQ);

(A15-EA) Supposethat (i) ( ;N;L;w;) F Epand (i) ( ;N;L;w;) F AEpis
not true. From (i) and S8, we know that (iii) there is L; which agrees
with L on the state formulas satis ed up to w; sud that ( ;N;L;;(L; !
L)(w;)) F p. Moreover, (ii) and S8 allow usto sa that it is not the case
that (iv) there is Ly which agreeswith L on the state formulas satis ed
up to w; sudh that ( ;N;L; (L 1 L)(w)) E Ep. But (iv) and S8 show
that there is not an Ly sud that for every L, which agreeswith Ly on
the formulas satis ed up to (L, * L)(wi) and ( ;N;L;;(L, Y L)((L,?
L)(W;))) F p, which cortradicts (iii) because(L, * L) (L, L) =
LY (L LD L=L Y1 L=L,* L. Therefore,applying S3 to the
negation of our assumption,ve concludethat ( ;N;L; w;) F Ep! AEp;

(A16-EV) Supposethat (i) ( ;N;L;w)) F (Ep)Vqbut (i) ( ;N;L;wj) F
E(pV q) is not the case. From (i), S7 and S8, (iii) thereisw; 2 domL
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with L(w;) < L(w;) and Ly which agreeswith L on the state formulas
satised up to w; such that ( ;N;Ly;(L,* L)(w)) F p and for every
wy 2 domL whereL (w;) < L(wy) < L(w;), ( ;N;L; wy) F 0. In addition,
from (i), S8 and S7, we seethat for every L, which agreeswith L on the
formulas satis ed up to w; and every w,, 2 domL; with L;(w;) < L;(Wp),
(5N;Li(L Y L)X(wm) E pand (;N;Li(L Y L)(wa)) F g for any
w, 2 domL; whereL;(w;) < L;(w,) < Li(wy,) are not both true. These
hold for L, = Ly, and wy, = w;, but in this case(iii) is cortradicted.
Therefore, applying S3 to the negation of our assumption, we conclude
that ( ;N;L;wi) F (EpVq! E(pVa);

(Al7-AU) Assumethat ( ;N;L;w) E A(p! X(gUp)). By S8, S3 and the
de nition of satisfaction of X and U, our assumptionis easily shovn to
be equivalert to (i) for every L; which agreeswith L on the state formulas
satised up to w;, ( ;N;Lj;w;) F p, wherewy = (L; L L)(w), implies
in the existenceof anw; 2 domL; with Lj(w) + 1 L;(w) sud that
(;N;Lj;w) F pand ( ;N;Lj;wn) F q for any wy, 2 domL; where
Lj(wk) Lj(wm) < Lj(w). Assumein addition that (i) ( ;N;L; w;) F p.
Note that (i) particularly holds for eat L, which agreeswith L on the
satis ed formulas up to and including w;. In thesecaseswe can apply (i)
in (i) and infer that there is an w2 domL, with Lo(w;) + 1 L,(w)
such that ( ;N;Lp;wd) F p, (;N;La;w2) F g for any w2 2 domL,
whereL,(w)+1 L,(W%) < L,(wQ). The de nition of satisfactionof U,
X andS3shovthat ( ;N;L;w) F A(p! X(qUp)! (p! XA (qUp);

(A20- 8) Assumefor x 62Fredp) that (i) ( ;N;L;w;) F 8 p! q, and (i) it
is not the casethat ( ;N;L;w;)  p! 8x g So,from (i), S4, S3, for
everyv 2 cod N and ewery assignmeh N, for sud that N,(y) = N(y) if
y 6 x or Ny(y) = v otherwise,( ;Ny;L;w;) E pimplies( ;Ny;L; w;) F q.
The consequenin this implication is alsoobtained from ( ;N;L;w;) E p
in a structural induction argumer, due to x 62Fregp). On the other
hand, we have that ( ;N;L;w;) E p but ( ;Ny;L;w) F qis not true for
somev, N,, dueto (ii), S4, S3. Therefore,we reath a cortradiction and
concludethat ( ;N;L;w;) F 8 (p! ! (p! 8x Q)

(A22-EQ) Assumethat ( ;N;L; w;) F (t; = t,). Consequetly, for a givenfor-
mula p and any formula g, ( ;N;L;w;) F pfagnt,g implies( ;N;L; w;) F
pf gnt,g. This is proved in detail by structural induction on the notions
of interpretation and satisfaction basedon the de nition of substitution
but is omitted here. Applying S3 twice, we concludethat ( ;N;L; w;) F
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(tr=1t2) ! (pfontag! pfant2Q);

(A23- 9V) Supposethat x 62Fredgq) and (i) ( ;N;L;w;) E (9x p)V qand (ii)
( ;N;L;w) E 9x (p)V qis not the case. From (i), S7 and S4, there is
w; 2 domL with L(w;) < L(w;), v2 cod N and assignmeh N, with the
usual de nition sud that ( ;Ny;L; w;) F p and for every wy 2 domL
whereL(w;) < L(wx) < L(w;), ( ;N;L; wx) F qg. In addition, from (ii),
S4 and S7, for every v°2 cod N, assignmeh Nyo with the usual de ni-
tion and every wy 2 domL with L(w;) < L(w), ( ;Nw;L;w) F pand
( ;Nyo;L; wy) F qfor any wy, 2 domL whereL(w;) < L(wy) < L(w)
are not both true. Note that this is equivalert to universally quartifying
N, only in the rst half of the sertencebecausex 62 regq). In particular
(i) holdsfor Nye = N, and w; = w; but in this case(ii) is cortradicted.
Therefore, applying S3 to the negation of our assumption, we conclude
that ( ;N;L;wi) F (9x pvg! 9x (pVa);

(A24-EQG) Assumethat ( ;N;L;w;) F (t1 = tp) for t;, t, free from any
attribute symbol. In particular, for any w; 2 domL sud that L(w;)
L(w), (;N;L;wp) F (t = t), dueto S2, [ta] ™ (wi) = [ta] ™ (wj) and
similarly for t,. From the de nition of satisfactionof G and S3, we con-
cludethat ( ;N;L;w) F (t1 =t2) ! G(ty = ty);

(A26- 8A) Assumethat ( ;N;L;w;) F 8x A(p). Accordingto S4, this means
that for every v 2 cod N and ewery assignmen N, for sud that N, (y) =
N(y) if y 6 x or Ny(y) = v otherwise,( ;Ny;L;w;) F Ap. Now, from
S8, we infer that for any L; which agreeswith L on the state formulas
satised up to wi, ( ;Ny;Lj;(L; L L)(w)) E p. Rewersingthe order of
theseuniversal quarti cations over N, and L; and applying S8, S4 and
S3in this order, we concludethat ( ;N;L;w;) E 8x Ap! A(8x p).

It remainsto be shown that, if a setof seriencesis relatedto a sertenceby
an entailment of M SBTL, then they are alsorelated by the correspnding se-
mantic consequenceelation. Thatis, ~ pimplies F p. Not surprisingly,
we useour proof calculusto decompsethis problem. Assumethat ~ p. The
faithfulness condition in De nition 2.2.6 says that there is a derivation (D;p)
sud that (D;p) 2 Pr ( ;p). We proceedby structural induction:

BASE CASE: Characterisedby derivations consisting of a single step, where
D = f g. Accordingto 2.2.6,we only needto examinethe following case:

p2 Ax() : Here, = fg. It isshovn abovethat ( ;N;L;w;) F p for
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any , N, L andw; 2 domL whenewer p2 Ax(). Hence,( ,N,L,
wi) F qforanyq2 implies( ;N;L;w)F pi.e., F P

Note that there is no needto examineother basecases.For, if p2 , 6
f gandthen D 6 f g dueto the constrairt in the faithfulness condition.
If p62Ax() [ andD =1fg, (D;p) 62Pr ( ;p) dueto the minimality
of Pr ( ;p).

INDUCTIVE STEP: Characterisedoy derivations constructedout of many steps.
Since(D;p) 2 Pr ( ;p) for someD 6 f g, this must be true becauseof
the third casein the de nition, dueto the minimality of Pr ( ;p). This
meansthat the following must bethe casefor some = f( i;p)j i[ fpig
G() g () D=Ff(d;p)2Pr ([ i;p)i i ;9c2 c= (;p)g
and (i) " p. Sinceour proof calculusis given in Hilbert-style, all
the ;s above have to be empty and can be ignored. By the inductive
hypothesis, from (i) we obtain ; F p and becauseof [ ; and
the monotonicity of £ , we conclude(ii) E pi. We shoved above
that ead inferencerule presenes validity. So, from (ii) we obtain (iv)
fpi9i (i;p)2 gF p. The transitivity of = allows usto link (iii),
(iv) and concludethat F p.

The above holds for any derivation D sud that (D;p) 2 Pr ( ;p). Therefore,

becauseof the faithfulness condition, we can concludethat V8™ pimplies

EVYSETL p. B (MSBTL Soundness)

Theorem 2.9.4 MSBTL is alogical system.

Proof: The signaturesof M SBTL determine a category The morphismsin
this categoryare structure preservingin the sensethat the componens of eat
signatureare mapped accordingly The proofthat Sig" °®*™" is a categoryis then
deweloped in a way analogousto Theorem2.3.2.

The enailment systemof MSBTL is de ned by a proof calculuswhere
wealening and distributivit y are logical. So, as shovn in Section2.3, the prop-
erties of re exivit y, monotonicity and transitivit y of full ertailment relations are
automatically obtained as well as strong structurality due to the format of our
axiom sdhemas. Theseensurethat M SBTL is a full entailment system.

We de ned a model theory for MSBTL in Section2.8. The collections
of sudh models de ne categoriesas claimedin Proposition 2.9.1. In turn, they
support an institution accordingto Lemma2.9.2.

Entailment andinstitution obeya soundnesgondition accordingto Lemma
2.9.3,shawing that M SBTL is a logic. Togetherwith the proposedproof cal-
culus,M SBTL constitutes a logical system. B (MSBTL Logical System)
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The following result is of a negative nature:

Theorem 2.9.5 MSBTL is not complete.

Proof: We prove this theoremin away studiedin detail by Abadi (1989),shawving
that the sertencestrue in the standard model of (Peano) arithmetic can be
mapped into valid sertencesof our temporal logic. Becausearithmetical truth
is undecidable,there is a true sertence sud that neither itself nor its negation
can be proved (Godel 1931), this result is transferedto the temporal logic.

Considera sertence p written in the languageof arithmetic presened in
Figure 2.2. A\Srecursi\,e) translation of p into our temporal logic can be de ned
as (p) € p” " fgjq2 Ax(TA)g whereTA is the speci cation in Figure 2.16'3.
Note that (p) is well-de ned becausethe languageof PA is included in that
of TA. Alternatively, we could have also chosendistinct symbol namesand
connectedthese theories from distinct logics by a functor, in which caseour
argumert would be similar to the above.

We know that A, = (N, Oy, Sy, +u, u) isthe standard model of the-
ory PA. On the other hand, accordingto De nition 2.8.2,any model of TA
must have the following structure: = (T, A, fN : N ! g;f g for Ay =
fN ;(Oy;su;+u; v)gandT = ( o, , , ). Therigid constart and function
symbols speci ed through axioms (10.1) to (10.6) are interpreted asin the clas-
sical casebecausehis setof axiomsis the sameof Figure 2.2. In addition, axiom
(10.7) guararteesthat, in any behaviour L 2 , ead elemen of N denotedby
the attribute synbol n is the N-image of somew 2 domL. Moreover, axiom
(10.8) guararteesthat eath w 2 domL will be mapped to a unique elemen of
N denotedby n. Therefore,N is a bijection betweendomL and N . BecauseL
itself is a bijection betweenits domainand N, N is isomorphicto N. Picking
asany in nite setproducesa model for TA. We infer in this way that A F.. P
I AtFea Pi Fra (p), this last biconditional beingjusti ed by the de nition
of and the fact that sort symbols are rigid.

Supposethat TA F  (p) impliesTA ~ (p) for every sertencep. Applying
the de nition of our interpretation and the previousassumptionto somep sud
that A. F p, this would meanthat we have a method to determinewhether or
not a sertenceis true in the standard model of arithmetic, but this cortradicts
the incompletenessesult deweloped by Gedel. We have shovn that M SBTL is
incomplete. B (MSBTL Incompleteness )

3The idea behind this speci cation is to assignat ead time instant the exible symbol n
to a unique natural number and to establishin this way a bijection betweenthe denotation of
nat and N. Axiom 10.7 says that in the beginning of time n = 0 and, for eat elemen x of
sort nat, it will be assignedto n evertually. Axiom 10.8 guaranteesthat the next value of n
is always the successof its current value.
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Theory TA
sorts nat
constan ts 0: nat
operations s:nat! nat;+ :nat nat! nat; :nat nat! nat
attributes n : nat
axioms x;y :nat'*

1 (0= s(x)) (10.1)
s(x)=s(y)! x=vy (10.2)
X+ 0=x (10.3)
X+ s(y) = s(x +y) (10.4)
x 0=0 (10.5)
X s(y)=Xx y+Xx (10.6)
beg! n=0"F(n=Xx) (10.7)
n=x! X(n=s(x)) (10.8)
End

Figure 2.16: Temporal rst-order theory of Peanoarithmetic.

It is important to stressthat the negative result above only holds for the
interpretation structures we have chosenhere. It may be possibleto nd a
slightly di erent semarics for our logic sothat it becomescomplete. Andreka
et al. (1995) have applied CorrespndenceTheory as proposedby van Benthem
(1984)to map rst-order temporal logic into classicallogic, which is complete.
Thus this result may be transferedto the temporal framework. In our case,
it appearsto be necessaryto study in detail rst if the propositional fragmen
of the logic above is medium complete before proceedingwith the study of the
rst-order framework. Researh in this direction is under way.

Concludingthis section,we return to Proposition 2.7.4. We shaw that the
inferencerule proposedtherein is admissiblein MSBTL. As a corollary, we
deducethat a logical systemis obtained as a result of adding sud rule to the
proof calculusof M SBTL.

Theorem 2.9.6 (Admissibilit y of INTR O) Assumethat s 2 Sort(), t2
Attr () with typg(t) = ! sand 2 Act() with typg )= s sforagiven
in obj Sig"*"®". The following inferencerule is admissiblein M SBTL:

(INTR O) 1. IRR 4; APR OG
2. STAB 5. FREE
3. TERM 6: LIM

8x (F(pxD)! 9y F(y x~plyD)! 8x :F(p[x])

14The variables x and y of sort nat appear implicitly quanti ed in the subsequeh axioms.
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Proof: We assumegiven a signature  sud that s2 Sort(), t2 Attr () with
type(t) = ! sand 2 Act() with typg ) =s s. Wewrite x vy for

(x;y). A classication Class() for is alsoassumedto exist. We have
to shaw that, for any frameT = ( , o, , ), assumingthat the premisesof
INTR O arevalid in T, the conclusionis alsovalid in T.

From (2), it is easyto seeby applying the rule of temporal generalisation
R2-G that FG(8x;y x y! X(x y)) isthe case.Conjoining this serience
to (3) and relying on the distributivit y of both FG and 8 over conjunction,
we concludethat the symbol  will evertually have a rigid interpretation in
any model basedon T. We call the world from which this becomestrue as
Wp 2 domL, foreathh L 2 .

From (4), it is not di cult to derive the following sertience:

GBx t=x! X({t=x_t x)! 9 FG(t=x) (2.9.4)
Supposethat for somemodel = (T, U, G, A), thereis anin nitely decreasing
sequenceof valuesfrom sy, S = htg;ty;:::i, which are related by . We are

goingto shov basedon S that cannot exist while satisfying the premisesof
INTR O and (2.9.4) in particular.

Since our assumptionguararteesthat (1) is true in , we can infer that
(@ t; 6 tj., for every i 0. Moreover, from (5), for every world w; of a
xed behaviour L; sud that Lj(wo) < Li(w;) and [t] ™ (W) = ti,w) Liwo) 1»
we know that there is another behaviour Li;; with a past history up to s
equivalert to that of L; sud that for wi.; 2 domL;.; with Lisq (Si+1) = Li(wj)+
1, [t] ™ (Wis) = tL v wis) Li(wo) 1- This shows that the anteceden of (6) is
satis ed, sowe also obtain basedon the discretenesf S and L that (b) there
isanL 2 sud that 8s; 2 domL L(wo) < L(s)! [t] ™ (W) = tiow) Liwo) 1
for any assignmenh N for Class(). The anteceden of (2.9.4) is satis ed from
s; onwards dueto (b) and the rigid characterof , but the consequen of this
implication is newer obtained in L sincethe value of t keepschanging forewer,
accordingto (a) and (b). In this way, our assumptionof an in nitely decreasing
chain of values from sy related by | generatesa corntradiction. Therefore,
thereis no sud an in nite sequencen any basedonT.

Supposethat the antecedem of the conclusionis the casebut the conse-
quert is not. From the latter, we know that (i) there is at leastoneeleme in
sy for any basedon T cortaining U. From the former, we know that (ii) for
eweryt; 2 sy, thereisatj,; 2 sy sud that ti.; ¢ tj. From (i) and (ii), we can
infer that there is an in nitely decreasingsequencef valuesfrom sy related by

u, but this is a cortradiction. Hence,the conclusionof INTR O isvalid in T.
We concludethat INTR O is admissible. B (Admissibilit y of INTR O)
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Corolary 2.9.7 (Soundness of MSBTL") MSBTL" is sound.

Proof: Basedon Lemma 2.9.3, we only needto shov that INTR O presenes
validity. But this is preciselywhat Theorem 2.9.6 states. Therefore, MSBTL "
is sound. B (MSBTL" Soundness)

2.10 Summary and Related Work

We beganthis chapter arguing in favour of a proof-theoretic approad to rig-
orous software dewelopmen. The many stepsof the dewelopmen processwere
examinedand the bene ts of adopting this viewpoint were outlined. A number
of authors, sudh asLehmanet al. (1984), Turski and Maibaum (1987), Fiadeiro
et al. (1991) and de Queiroz (1990) appearto sharea similar view, which is not
original to our work.

Afterwards, we presertied de nitions of many general logical structures
which appear to provide an adequatefoundation for our proof-theoretic stud-
ies. In particular, we stressedthe fundamenal role of category theory as a
meansof deweloping a software developmen theory relatively independert from
the adopted logical systemas well as of facilitating the transposition of results
betweenrelated systems.Generallogicshave beenextensiwely studiedin the lit-
erature by Fiadeiro and Sernadag1988), Goguenand Burstall (1992), Meseguer
(1989), Fiadeiro and Maibaum (1993) and Cerioli and Meseguer(1997) among
others. On top of these studies we have introduced a minor but newertheless
necessaryassumptionof syntactic vocabulary closureand a practical de nition
of proof-calculuswhich seemgo be a good alternative if comparedto the com-
plicated categoricalde nition adoptedby Meseguer(1989).

A seriesof ertailment systemswas subsequetly de ned culminating in
the introduction of a new many-sorted, rst-order, branching time logical sys-
tem with equality, which appearsto be adequatefor designingextensible soft-
ware systems. We examinedin detail the proof-theory of fragmens of this
system basedon their Hilbert-style de nitions, providing realistic application
examples,and nally assessedther characteristicsalsorelated to their model-
theory, namely soundnessand completeness.From the proof-theoretic side, it
is unfortunate to have only a Hilbert-style proof-calculusfor our connectives
becausemore elegan proof-theoretic techniquessud as cut elimination cannot
be e ectively applied in this way. From the model-theoretic side, we discorered
that the adopted semarics doesnot yield a completenesgesult even though
this may be possiblein a slightly changedframework. Theselimitations do not,
howeer, precludethe practical application of our logical systemand in fact it
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is not yet clearif the solution of theseproblemsmay leadto the developmen of
a useful framework.

Perhaps the major cortribution of this chapter is the proposed logical
systemand the correspnding designprinciples deweloped to support the spec-
i cation and veri cation of software systems. A substartial number of related
formalisms with their own principles has already appearedin the literature.
Chandy and Misra (1988) have deweloped UNITY, which is not strictly speak-
ing a temporal logical systembut supports the designof concurrert systems.
UNITY lacks an elegan treatment of naming, which is resohed in terms of set
theoretic operationson the symbols of eat presemation and doesnot support in
this way modulariseddesign,sincenameclashesmay occurin conbining speci -
cationswhich weredewelopedin isolation. This is treated hereby the categorical
constructionsadopted following Fiadeiro and Maibaum (1992). Among tempo-
ral logical formalisms, TLA (Lamport 1994)and the linear time logic proposed
by Manna and Pnueli (1989)are closeto ours, although they werenot deweloped
with the sameassumptionsin mind and thus do not provide a proof-theoretic
accour to ead logical symbol, asthe enablednessonnective demonstrates.We
beliewe that sud a kind of de nition is fundamenal in rigorous software devel-
opmert and, in particular, when automating the process.Another related logic
is CTL (Emerson1990), which is a propositional branching time logic where
the branching connectiwe hasa slightly distinct meaning. We have provided both
a functor shaving how to interpret CTL theoriesinto our formalism and the
rationale justifying the choice of a distinct modality meaning. Concerningthe
designprinciples proposedherein the form of derived inferencerules (apart from
the adopted categoricalconstructions), the andored induction rule appearsto
be quite a standard way of dealingwith the veri cation of safety properties. The
lattice rule, on the other hand, normally lacks either methodological guidance
or an axiomatic basisupon which it canbe applied. We are only aware of other
works hereinboth problemsaretreated just for the caseof rigid relation symbols
in terms of non standard methods. We shall have the opportunity to exemplify
the application of our principles throughout the following chapters.



Chapter 3

Designing Open Recon gurable
Systems

Distributed systemshave provided one of the most pertinent frameworks for
organising separateindependerily produced software artifacts. Essemially, a
distributed systemconsistsin a set of loosely interconnected software compo-
nents. For instance, a set of proceduresput together to run as a sequenal
program cannot be regardedas a distributed systemunlessthere are methods
supporting the replacemen of someof thesecomponerts at run time and also
their executionin separateaddressspaces.Clearly then, the de nition above is
not very informative and hasto be complemented by a model which speci es
how componerts are connectedto ead other and interact amongthemseles.
Distributed systemmodelscomein di erent avours. First of all, oneneeds
to considerwhetherinteraction is to be supported by sharedor isolated ertities.
Shared memory allows distinct componerts to have read and perhapswrite ac-
cessto a commonstorage. This is peculiar to the developmen of protocolsfor
ensuringdistributed memory consistency(Raynal and Mizzymo 1993). Shaed
control allows distinct componerts to obsene the sameewert simultaneously
A family of so-calledcoordination languageds basedon this notion (Ciancarini
and Hankin 1996). Interaction basedon sharingis necessarilysyndironous. On
the other hand, messagepassingis not necessarilyso. Messagesre transmitted
in asynchonousmode if and only if it is not possibleto placeinternal bounds
on communication delays nor on the relative speedof eath componert. Other-
wise, the mode of interaction is consideredto be synchionous In modelsbased
on messagepassing, wherein interaction is directed, there is also the issue of
deciding the number of participants allowed in ead interaction. If there must
be only onerecipient for ead messageye say point-to-point commnunication is
supported. At the opposite extreme, broadasting is characterisedby the fact
that ead messagas always distributed to all the componenis of the system.

93
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Distributed systemsbasedon thesemodelsmay support extensibility in an
e ective mannerif they are alsoopen and recon gurable. A distributed system
is said to be recon gurableif and only if the interconnection topology of its com-
ponerts, or more simply its con guration, may vary with time. Moreover, the
systemis said to be open wheneer it may ewertually interact with an environ-
mert over which little if any cortrol is retained. Becausefew assumptionscan
be made about the ervironment and the dynamic con guration of the system,
it becomeseasierto support changeswhich lead to extended functionality or
structure. As we arguedin the introduction, sinceopennessand recon gurabil-
ity seemto enforceextensibility, it appearsto be reasonableto articipate their
use and introduce explicit support to these notions at more abstract levels of
the dewelopmen processsud aswhen performing software design.

Designingopen recon gurable distributed systemsin a rigorous way does
not appearto be an easytask. For example,Abadi and Lamport (1994)adopted
the temporal logic TLA in arely-guarartee style to dealwith opennesshput left
recon gurability completelyuntreated. On the other hand, awhole eld of study
was uncovered when Milner et al. (1992) proposeda syndironous value passing
processcalculusin which namesare primitiv e and canbe passedaroundto allow
the respective processego recon gure. Howewer, they have preferredto leave
the notion of opennessuntouched. Both notions were addressedoy Agha et al.
(1994) in terms of the so-calledactor model, which is basedon asyndironous
messagepassing,but at a level of abstraction very closeto implemertation and
without concernfor rigorous veri cation of properties.

A model of distributed systemsmay be expressiely rich enoughto capture
openness,recon gurability and other notions that support extensibility. We
beliewe this to be the caseof the actor model. This is why we study in this
chapter how to provide explicit support for this model usinga proof calculusthat
extendsour work of Chapter 2. Manna and Pnueli (1983) have also applied, at
lower levels of abstraction, this idea of particularising a temporal logical system.
In particular, we follow the terminology proposedby Fiadeiro et al. (1991) and
claim to give a temporal proof-theoretic sematics for the interaction primitiv es
of the actor model. We provide methods and principles to support specifying,
composing and reasoningabout actor comnunities. We also show that other
messaggassingmodesof interaction and other notions supporting extensibility
may be treated in terms of actors. This open recon gurable systemsdesign
initiativ e basedon actors initiated by Duarte (1997b)is indeed possibledue to
a result of Koymans (1987), who rst shawed that by adopting purpose built
temporal logicsonecantreat a variety of messaggassingmodesof interaction.
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We proceedby introducing the actor model and discussingsomerelevant
issuesin the design of the respective temporal proof-calculus. Subsequetty,
we descrike our approad to the speci cation and veri cation of actor systems,
illustrating the technicalities involved by meansof a simpleexample. A summary
and a comparisonwith related work appearin the last section.

3.1 Issues in the Design of a Pro of Theory for
the Actor Mo del

Sincethe pioneeringwork of Hewitt and Baker (1977) on the foundationsof con-
currency a promising model of open distributed systemshas been deweloped,

initially by Clinger (1981) and lately by Agha (1986), Talcott (1996b) and oth-

ers. The so-calledactor model regardsdistributed systemsas commnunities of

objects with encapsulatedstate which may only be changedby performing local

computations. Messagepassingbetween actors is bu ered, point-to-p oint and

asyndironous, basedon a localised naming scheme. As a result of processing
messagesnew concurrert actors can be created, local computations can occur
and actor namescan be comnunicated.

Considering the characteristics above, it seemsto be a natural researb
direction to abstract from previous work in which the model was realisedin
diverseprogramming languagesand semaitic domainsin order to examinethe
step-by-step dewelopmert, and herein particular the design, of open recon g-
urable systemsin terms of actor communities. Agha (1986)identi ed the basic
primitiv esrequired to support the model and outlined a genericoperational se-
martics for actor languages.In (Agha et al. 1997), the operational sematics
of a completelanguagewas deweloped along with criteria for dynamically com-
posing interacting actor componerts. Alternative semanic domainsde ned in
terms of the inferencerules of rewriting and linear logic were studied by Talcott
(1996a),Darlington and Guo (1995), respectively. All theseworks have focused
on describingin an operational mannerthe behaviour of actor systems.

In Chapter 2, we de ned a logical systemwhich appearsto be expressie
enoughto support the designof actor systems. State and change,for instance,
can be represeted by setsof attribute and action synmbols. Moreover, creation
and naming may be dealt with in the usualway studied by Ehrich et al. (1988),
in terms of the rst-order featuresof the logic. This is to say, a distinguished
sort synbol denoting object namesis consideredto be part of every signature
and all the attribute and action synbols are regardedto be parameterisedby
the respective sort, extending the originally provided speci cations. To avoid
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con icts betweenthe creation of new actors and the satis abilit y of Barcan for-
mulas, every actor speci cation may carry an auxiliary existertial boolean at-
tribute symbol. Accordingto this approad, objectsthat have not beencreated,
I.e., their respective attribute is equalto false,do not play any role, paraphrasing
America and de Boer (1996).

Concerningthe bu ered, point-to-p oint, asyndironousmode of interaction
betweenactors, a faithful appraximation canbe de ned by introducing another
set of logical synmbols in ead speci cation and providing an extendedaxioma-
tisation which dependson thesenew symbols. In particular, becausethe actor
model requires the delivery and consumption of a messagelo be guararteed
wheneer it becomegossibleoften enoughfor the target actor to deliver sud a
functionality, fairnessrequiremens which demandspecifying whentheseewens
may occur asit is impossibleto determine a priori how the environment will
ewlve, the full expressienessof our branching time logic hasto be used.

Consideringthis rationale, actor speci cations shouldlook like Figure 3.1.
Therein, bu er cellsare speci ed which dynamically allocate a new cell for eat
stored integer. Attribute symbols represen the actor state whereasmessages
and local computations are represeted by action symbols. The connectivesE,
X, F areaspreviouslyde ned. In Axiom (11.9), for instance, X is usedto state
that, if a messageut(v) is consumedby the last cell of the bu er (Ist= T), in
the next instant another cell cortaining the valuev will be createdand linked to
the currert one (new ( item;n; v) ~ link(n)). Subsequetty, the bu er will have
recon gured accordingly On the other hand, is a new de nable temporal
connective which is requiredin stating that a property holdsonly if precededoy
the occurrenceof another property. Axiom (11.13) determinesthat neither of
the two everts above happen unlessthe appropriate cell consumesa put message

rst. We shall cortinue to explain this examplein the following sections.

3.2 An Axiomatisation of the Actor Mo del

3.2.1 Representing Actors

We usetheory signaturesto de ne the synbols that canbe usedin writing eat
speci cation. Speci cations, in turn, consistof nite sets of axioms de ning
theory preserations. Both notions are the sameas explained in Chapter 2,
but here we particularise even further the structure of M SBTL signaturesto
cater for the peculiarities of the actor model. We alsousea shorthand notation
which will facilitate the exposition of the formalism. Theory signaturesfor actor
speci cation are de ned asfollows:
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Actor BufferCell

data typ es addr, bool;int (T;F : bool)

attributes val : int; nxt : addr, void; Ist; up : bool

actions nil;item(int) : local + extrn birth ;
go; cons link (addp) : lo cal computation
put(int); get(addr) : local + extrn message;
reply(int) : extrn message

axioms Kk;n :addrv:int;x;y : bool

nil! void=T"Ist=T up=F (11.1)
item(v) ! val=v~void=F"Ist=T" up=F (11.2)
nil _item(v) ! X(go) (11.3)
go! X(up=T) (11.4)
go” val = v*void = x*nxt = nMIst=y! X(val = v*void = x*nxt = n*Ist = y) (11.5)
cons nxt = nMlst=xMup=y! X(void=T7"nxt=n"lIst=x"up=y) (11.6)
link(n)! X(nxt = n”Ist=F) (12.7)
link(n)~ val= v~ void=x~up=y! X(val=v~ void=x"up=y) (11.8)
put(v) M lst= 1! X(9n new (item;n;v) " link(n)) (11.9)
put(v) M Ist=F~ nxt = n! X(send put;n;v () (11.10)
get(n) ~ void = F~val = v! X(send reply;n;v (*)cong (11.112)
get(n)* void= 17" Ist= FA nxt = k! X(send getk;n () (11.12)
9n new(item;n;v) _link(n) put(v)*lIst=T (11.13)
send reply;n;v (_)cons get(n)”~ val = v” void = F (11.14)
send put;k;v ( )put(v) A nxt = k™ Ist=F (11.15)
send getk;n ( )get(n)® nxt = k~void=T"Ist=F (11.16)

up=T! FE(deliv (put;v)) ™ FE (put(v)) * FE (deliv (get;n)) ™ FE (get(n)) (11.17)
End

Figure 3.1: Speci cation of integerbu er cells.

De nition  3.2.1 (Actor Signature) An actor signature = (, A, ) isa
triple of disjoint and nite families of symbols sud that:

= (S, ) isauniversesignature,i.e., S is a setof rigid sort synbols and
isanS ~ S-indexedfamily of rigid function symbolst. We alsorequire
that addr2 S, represeting the sort of mail addressegor actor names);

A (orA))isanS _~ S-indexedfamily of exible attribute synbols;

= ( e 1, o) isatriple of S_-indexedfamilies of action symbols sut
that ( e[ 1)\ c¢=fg . isasetoflocal computation synbols. The
elemeits of . and | represen, respectively, events to be requestedfrom
the ervironment and provided locally?. Ead of thesetwo sets cortains

distinguishedsub-setsof messagend birth symbols, e.g. | , and .

We write ! s-indexed families of signature symbols as if s were their single
index. Givenasetor sequencef sud symbols X , wewrite asX g, -5, i:s the sub-

1We usually considerthat the enumerated constarts are all di erent from ead other.
2Becauseactors may self-addressrequests, ¢ and | should not be disjoint in general.
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set or sub-sequencef X cortaining symbols of type hs;;:::;s,i ! sonly. To
make referenceto speci ¢ setsof signature symbols, we operate with subscripts
to denoteoperations on sub-sets.For instance, ¢ \ |, iswritten as ¢\ ,. ]

In the examplespeci cation of Figure 3.1, addr, bool and int are the sort
symbols that constitute, together with their implicitly speci ed constarts and
operations, the universesignature . Clearly, the sort of mail addressesddrhas
to be part of every signature. Otherwise, somespeci ed actorswould be useless
without the ability of exdhanging message®r creating new actors. Still in the
example,val (current value), nxt (next cell address),void (consumedcortent),
Ist (last cell) and up (live cell) are the attribute symbolsin A. In the particular
terminology of the actor model, they are called acquairtances, which may be
determinedat creation time or in performing local computations.

The structure of the set of action synbols di ers from those of Sernadas
et al. (1995), Fiadeiro and Maibaum (1992), who advocate similar logics, and
alsofrom our de nitions in the previous chapter. Each actor speci cation may
guarartee the occurrenceof externally required everts and may determinethat
the occurrenceof someewerts is required from the ervironmert. Actor speci ca-
tions may alsode ne local computations. Becauseof thesedistinctions, the setof
action symbolsis divided into |, ¢ and ., respectively. The rst two of these
are partitioned into sub-setsof symbols to represeh messageand births, ¢ ¢
and ¢, for instance. Actors interact via asyndironously transmitted messages,
denotedby the symbolsin (i 1) (e ¢,), Which are usedin mary di erent ways.
For instance,put(v) represets the consumptionof a messagegut carrying v as
its contents and send put; n;v () speci es that the samemessagend contents
are transmitted to an object whosemail addressis n. The distinguished uses
of signature symbols also apply to the creation of actors, through the primitiv e
new and the subsequen occurrenceof birth actionsin ¢, All theseewerts
canonly occur carrying a nite number of acquairtancesand are exempli ed by
the action symbols in Figure 3.1.

As is usual in a proof-theoretic approad, cf. Fiadeiro et al. (1991),
Wieringa et al. (1995), we extend signatureswith some new logical symbols.
The situation here resenbles the use of hidden symbols in algebraic speci ca-
tions (Ehrig and Mahr 1985). Therein, the specier may needto use an ex-
ternally unavailable languageto specify complex data types. Herein, we usea
simpler languageto specify complex patterns of behaviour presenied by ewvery
actor, de ned in terms of a more complexlanguage. This extendedlanguagewill
be usedto provide an implicit proof-theoretic semattics for the actor primitiv es
and that is why it should not be required from the speci er of ead signature.
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De nition 3.2.2 (Extended Actor Signature) Givenan actor signature
=(, A,) suhthat = (S, ) and = ( & |, o), thetriple ( ,
A, ) issaidto bethe extende signature of if and only if:

1.

(S [ f b00|g, [ fTbooI; I:bool; NOTbool! boolg);

2. A= (A, A, As, Ag), sudh that (i) foreadr c2 |, of sort hsy;:::;spi
there is an init; 2 A (i) for eadhh c 2 (¢ o) 1,) Of sort

hsi;:ii;sni thereis asente 2 Ag, . 1., and (iii) foreahrc2  , of
sort hsy; it sqi thereis adelivde 2 Aqy .. 1400+ All the symbolsin the
respective componerts of A aredueto (i), (i) and (iii);

3. = (e ous 1» in» o rov), Where(i) for eahr c 2  of sort
hsy;::i5sni thereis an oute 2 outuugagars e 415 (1) fOr eadr c2 of sort
hsy; 5 sni thereisaning 2 in g dges s i @NA (ii)) foreahrc2 -, of
sort hsy;:ii;sqi thereisarcve 2 reyy ..o, SUB that  ginfoutnrev = 0
andthat in, = out. if andonlyif c2 ¢ . All the symbolsin the respective
componerts of  aredueto (i), (i) and (iii). ]

That is to say, the original universesignature is extendedwith a boolean sort
symbol, new attribute symbols are provided to deal with the existenceof actors
and bu ering of messagesand new action symbols are introduced to handle
creation and interaction. Hereafter, we will not make any distinction between
extendedsignaturesand actor signatures.

A certral feature of actors is interaction. Here, it is simulated using the
action symbols out. and ing which happen simultaneously for any c2 . and
d 2 ?belongingto the actor commnunities, populations of objects complying
with the same speci cation, requesting and providing the event respectively.
These synbols correspnd either to the dispatch of a messageor the request
of an actor birth. The occurrenceof theselogical actions plays the role of the
interaction stepsof Talcott (1996b). For an interaction represeted by c be-
tween actors of the samecomnunity, hencerequired and provided locally and
menber of ¢ |, the occurrenceof the new actions above is obligedto be syn-
chronous by the secondconstrairt in (3.iii) of De nition 3.2.2. Otherwise, this
syndironisation must be supported by the existenceof a morphism identifying
thesesynbols as sharedby the distinct signatures,as discussedn Section3.4.
Asyndhrony in messageransmissionis guararteed by forcing out.jing to happen
strictly beforercvgy, which in turn hasto occur strictly befored itself. The two
last synbols correspnd to the occurrenceof the delivery and consumptionof the
messagerespectively. Finally, (double) bu ering is captured by the attribute
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delivdy (sent.) becomingtrue for somevalueswhenewer thesevaluesare deliv-
ered(sert) in a messageOf course,thesenew symbols do not explicitly appear
in speci cations but their behavioural constraints will have to be captured by
our axiomatisation. Also, accordingto the de nition above, ill formed messages
are not allowed | as action synbols, messageslways have a locally correct
represetation at the sender| and dispatched messagesvhich do not belong
to the languageavailable to the target actor are never delivered.

Following America and de Boer (1996), we considerthat in a given point
in time it is only possibleto deal with the existing actors at that momen.
Accordingly, an object will have someinit . attribute equalisedto T(RUE) for
somesequenceof terms ¥, only if the occurrenceof an action in¢(%), c2 ,,
givesrise to its birth. The structure of comnunities of actors which comply
with the samespeci cation, eat of which having a distinguished mail address,
is de ned below:

De nition  3.2.3 (Actor Comm unit y Signature) Given a signature =
(, A, ), acommunity signature P is obtained by \parameterising"  with
sort P. That is, P def(S[ fPg, ); AP is obtained from A by adding the
parametersort P to ead of its attribute synmbols;and P is obtainedfrom by
adding the parametersort P to ead action synbolin ¢, |, cand ... The
other symbols of  remain the samein P. ]

Clearly, the parameter sort P of every comnunity should be addr Indeed,
as idertied by Talcott (1996b), actor semanics should be parameterisedby
sets of actor addresses. Due to our de nition, a new argumen is added to
the appropriate signature synbols and its instanceswill be actor names.In this
way, the basicoperationson object referencesderti ed by Americaand de Boer
(1996), equality testand dereferencing are supported. Howeer, signaturesalone
do not support a modular design discipline, obliging the ertire structure of
complex systemsto be represeted as single ertities. The required meansof
composition shall be studied in Section3.4.

Due to the parameterisationof signaturesby addr, we are allowed to adopt
the usual object-basednotation of pre xing the nameof an object to the logical
expressiongertaining to it. In this way, we can move parametersoutwards and
write p(n; ¥,) as n:p(¥,) for any attribute and action synmbol p. This lifts in a
compositional manner to all the expressionsn ead language. Adopting this
convertion, for ead pair of formulas p and g, say, we have n:p”™ n:q n:(p” Q).
Sertencesof this kind are called glokal as opposedto the local oneswhich have
the focusactor striped out. Assumingthat n, n; 2 Term() aqqr, the usualactor
primitiv esde ned below are also admissiblein speci cations and proofs:
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For in f ormula reads W represents
[ | n:init initialisation Qv c(n;w)jc2 1,9
oute(ng;ng;we); if €2 ¢
inc(Ny; Nz ¥e); ifc2
oute(ng;ng;e); ifc2 ¢ o
inc(ni;n2swe); ifc2 |
Ve Term() n:deliv (c;w) messagedelivery reve(n; we); ifc2

Ve Term() ni:new (c;nz; ) actor creation

Ve Term() ni:send c;ny; % () | messageadispatch

Ib

To deal with our examplesin a more e ective way, we also adopt the following
de nitions of not so standard temporal connectives of strict precedence:

(D14-IP) &' o p! ( W)W (" : )
(D15-P) & pfan' p” (! X((C W)W (R": &)

D14 de nes an initial precedenceconnective and D15 an iterated precedence
connective. Both connectives are andiored; precedences required only after
the indexing formula occurs. In speci cations, indexesare instantiated with
beg and omitted. These connectives are neededto expresscausality. In our
example,get and reply are causallyconnected,meaningthat theseewerts do not
happen concurrerlly and ead occurrenceof get causesa subsequen dispatch
of reply, which doesnot happen otherwise(11.11,11.14). This shows that their
occurrenceis alternating. Note that neither of the connectivesabove is de nable
in terms of X, F and G only, justifying our choice of a temporal logic basedon
a strict strong until connectie.

There exists just another actor primitiv e not treated so far: become,
which prescribesthat an actor will behave in its subsequen computation ac-
cording to a distinct speci cation determineda priori. In fact, local computa-
tions in . like cons(consumption) of our exampletogether with a selectiwe use
of attribute symbols simulate this in an awkward manner. Indeed, the whole
BufferCell speci cation could have beensplit sothat ead cell could become
both a linked and an empty one accordingto the processingof previously re-
ceived messages It would be easyto presem become as another de nition
by introducing death actions in signaturesand by de ning the primitiv e asthe
death of an actor and its subsequen resurrection with a distinct behaviour,
keepingthe samemail addressin this process. Howewer, we have reasonsto
avoid treating this here: in the rst place,in orderto simplify our presenation,
and, secondly becausethe primitiv e, with the meaning descriked above, does
not increasethe expressie power of the model, asidentied by Agha (1986).

Concerningthe interpretation of signature symbols, the sameassumptions
madein the previouschapter are applicable here. Note in particular that everts

3Note that, sincej 1,j 2 [0;! o[, we allow actors to have \m ultiple constructors".
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may happen concurrertly if this is allowed by speci cation axioms and thus
action symbols are a syrntactic represemation of the evernts of Hewitt and Baker
(1977),which may proceedconcurrerily if unrelated. Speci cations are de ned
in terms of parameterisedsignaturesin the usualway. Axioms are only satis ed
by setsof in nite discretesequence®f worlds represeting the behaviour of an
actor community and this capturesall the possibleewlutions of an open system
rather than just the possibly terminating behaviour of someparticular objects.

3.2.2 Axiomatising Actor Behaviours

In this section, we dewelop a proof calculusfor the actor model which particu-
larisesthe logical system of the previous chapter by consideringan additional
set of logical axioms and inferencerules. The assa&iated notion of model is
taken from the classof structures de ned in Section2.8 which also satisfy our
extendedaxiomatisation. Thus, we can focus on the actor model here.

We dewelop an axiomatisation of a consequenceelation ~ , which is in-
dexedby a signature  becausethis relation is de ned in a way that strictly
dependson the synbols of the given signature. In other words, ~ is a weakly
structural consequenceaelation. We assumethat = (, A, ) Iisgiven.
We also usethe variable n for actor names,decoratedwith indexeswheneer
necessary Moreover, for a givenc 2 , typeglc) = hsy;:::;sqh, n 2 % ab-
breviates an = Vg jtype(vg) = addrl i ng and v = t, abbreviates
vaCi = Ugjl |1 ng. Freevariablesin axiomsare consideredto be implicitly
universally quarti ed and the following notation is usedto expressthe invari-
anceof an expressionthat a required actor namehasbecomeknown dueto the
delivery of a messagethe birth of the actor or the creation of new objects; that
a property does not occur until a speci c actor name becomesknown; and a
strong fairnessrequiremert over the occurrenceof a particular formula:

For in formula represents
t Term() I nv(t) 8k t=k! X(t=Kk)
p ) Inv(p) |y (" Xp) _ ¢ p" X( )
wiov deliv (divg) " n2wjd2 | 1,9
n Term() adar Acq(n) | wf9v d(va) " n2wjd2 .9
fOvg new(d;n;vg)jd2 ¢.9
n;p | Term() adar; G() | Wait(n; p) (¢ PW (init ) * (: pPW (Acq(n))
p &() Fair (p) F(p_GA(: p)

Asidenti ed by Hewitt and Baker (1977),locality is an essehal character-
istic of the actor model. This is alsoa crucial assumptionin object-basedlogics
to support modular speci cation and reasoning(Fiadeiro and Maibaum 1992,
Sernadaset al. 1995). Generally speaking, locality requiresthat state changesof
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an actor be e ected only by the events relatedto the object itself. This meansin
particular that ead actor hasencapsulatedstate. We chooseto capture locality
through the axioms below:

W \Y
(L1) 9% nic(we) _ 8w n:lnv(f (%))
c2 . f 2A |

%
(L2) ~ 8w 9n; ninew(c;nz;ve) _ nz:lnv(init ¢(vc))
c2 Iy

(L3) 8% 9n, naisend c;ni;% (_)ni:deliv (c;%) _ ni:l nv(sent(w))
c2 |

(L4) 8w njp:deliv (c;w) _ ni:c(ve) _ ni:l nv(delivd(w))
€2 |

The rst axiom sas that either an actor performs a local computation or its
extra-logical attributes all remaininvariant. In the BufferCell example,this
meansthat either cons link or go occur or elsethe valuesof val, nxt, void,
Ist and up do not change. According to the secondaxiom, either an object is
created with a certain name or the existenceof an actor with sud a nameis
not disturbed. The other two logical axioms are to guarartee that bu ering
attributes vary only when messageassingtakesplace.
The following axioms constrain the occurrence of ewverts:
(01) v 8w beg! G(: nyinit) _ v ny:Wait (n; send c;nz; % ()

C2 e e n2nz:ve
.V
(02) 8w beg! (: n:deliv (c;¥))W (n:init )
€2 |
.V
(03) 8w beg! (:nic(w))W (n:init )
C2 (1 iplec

__V Y
(0O4) 8w beg! G(: nginit) _ ny:Wait (n; 9n, new (c;nz; w))

c2 ep n2vw

(O5a) 8w;vy 9ni;w ninew(b;ny;w)! nainit g(ve) = na:senty(vg) = no:delivdy(vy) = F
b;c;2
dZC I Iﬁ;
\%
(O5b) 8w beg! (nic(w) $ ninit () = T)
c2
___V ’
(O6a)  9ng;nave E(niinew (c;nz; )
b
(06b) G(9'ny 9ni;% ni:new(c;nz;ve)) ! 8nz F(9n1;% ni:new(c;nz;we))
I
___V
(O7a) 8w 9n; ninew(c;nz;we) ! XF (n2:c(w))
b
___V
(O7b) 8% beg! X((: n2:ic(ve))W (: na:c(¥) ® 9n; ni:new (C;nz;we)))
b
__V
(08) 8w ni:new(c;nz;ve)! Bngz; ¥y N3:tb: 8 N1iv"N3:new (C;Nz; te)_Nz:new (d;nz; vy)

c;d2 Ib
déc

\Y,
(09) 8w nideliv (c;%)! nisente(w) =T
c2 | 1y,

__V

(010) 8w n:deliv (c;¥)! Bu;vy e 6 v ™ nideliv (c;ue) _ n:deliv (d;vy)
c;d2 TS
déc
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\Y
(011) 8w nic(w)! nidelivde(we) =T

c2 |

Vv

(012) 8w nic(ve)! Bug;vy e 8 v nic(ue) _ nid(vg)
cd2 (1 ipie
c6d

01-4 state that, beforethe birth of an actor, not only the dispatc, deliv-
ery and consumptionof message$ut alsolocal computations and requestsfor
creation are forbidden. Note that O1 and O4 are more liberal than the other
axioms if the respective actor is newver created but are more restrictive other-
wise by requiring that ead actor name becomesknown due to the delivery of
a messagethe birth of the actor or the creation of another object before the
name can be usedin the respective task. Theserestrictions are to prevernt the
useof arbitrary namesand modesof interaction sud as broadcastingwhich are
distinct from point-to-p oint messaggassing. On the other hand, the sameax-
loms are permissive concerningunborn actors becausewe are capturing an open
mode of interaction, which cannot be totally constrainedby the local semattics.
An actor complying with somecommnunity speci cation, sa, doesnot have to
be createdin this cortext, but may needto dispatch somemessagesvhich are
mertioned in the speci cation. Therefore,the occurrenceof theseewerts should
not be logically forbidden. The situation above is dual to that described by
Fiadeiro and Maibaum (1997) wherein read-only attributes are adopted as a
meansof capturing an open syndironous mode of interaction. Sud attributes
cannot be constrained locally, but only at a global level where the respective
componerts are put together and interfere with the behaviour of one another.

The subsequen set of logical axioms above relates the creation of new
actors, the occurrenceof birth actions and the existenceof other objects. O5a
and the other axioms imply that an actor can only be created once and also
that messagesare not sert or deliveredto the object beforeits birth. Moreover,
accordingto O5b, the actor birth occursin the beginning of time if the object
always exists. O6a says that it is always possiblefor someactor to create a
new object and O6b statesthat all the actor nameswill be usedif exactly one
object is created at ead instant. It is important to mertion that, becauseof
the speci ¢ characteristics of the adoptedtime o ws, the former axiom implies
that the set of actor namesis in nite while the latter implies that the sameset
is courtable. O7a and O7b state that the occurrenceof births and requestsfor
creation are always causally connectedafter the initial momert.

We have also proposeda set of axioms stating mutual exclusion. Most
of these properties are particular to the actor model, whereasa few are due to
decisionsin the designof our formalism. O8 speci es that actorswith the same
name cannot be concurrerly created; 09 says that messagegan be delivered
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only if they were previously sert; O10 determinesthat only onemessagean be
deliveredto an actor at ead instant; O11 says that messagesan be consumed
only if they were previously delivered; and nally , accordingto O12, message
consumption and local computations of an actor are totally ordered, meaning
that two sud ewverts cannot occur in parallel. Concerningthis last axiom, we
could have allowed instead actors with full internal concurrencywhile ensuring
attribute consistencythrough additional axioms. We preferthe simpler formula-
tion hereto facilitate speci cation and reasoning.Note that the speci ed actors
can always presen someinternal concurrencyanyway: they can, for instance,
create many other objects and sendse\eral messagesat the sametime.

Many logical attributes areintroducedin the extensionof actor signatures.
The modi cation of their valuesaccordingto the occurrenceof the respective
actionsis de ned by the following valuation axioms:

\%
(V1) 8w 9n; ni:new(c;nz;ve) ! X(nz:init o(w) = T)
c2 Iy

\%
(V2) 8w 9n; niisend c;nz;ve (I )X (n2:sents(v) = T)
c2 | 1y,

Y,
(V3) 8w n:deliv (c;%)! X(n:sents(v) = F” n:delivdc(w) = T)
c2 | 1y,

(V4)V 8% nic(w)! X(n:delivds(¥) = F)

c2 |

Accordingto V1, if the creation of an actor hasbeenrequested there will exist
a new actor in the next instant. Moreover, axioms V2 and V3 sa that if a
messages dispatched, it will be bu ered for output, and likewisethe message
will be removed from the output and transferredto the input bu er wheneer it
is delivered. Furthermore, eat processednessagevill be subsequetly removed
from the input bu er asstated in axiom V4. Note that the delay in bu ering
messagesn the next instant only, rules out the existenceof Zenoactors, which
could receiwe, compute and reply in nitely fast.

Finally, fairness axioms are required to guarartee a correct collective be-
haviour. Without fairness,it could be the casethat a messageas not delivered
ewven if the target actor is always willing to receiw it, e.g., becauseof a trans-
missionfailure, and likewisethat received messagesre never consumed.

(F1) v 8w n:delivdc(v) = TN E(n:ic(w)) ! n:Fair (c(%))

c2 | 1y

(F2)V 8w n:sentc(w) = T E(n:deliv (c;%)) ! n:Fair(deliv (c;%))

c2 | 1y,

The rst axiom saysthat, if the processingf a singlemessagés obliged,because
the messageavas delivered and has beenlocally bu ered, and it is alsoenabled,
i.e., possible,the messagewill be processedor elsethe actor will becomeal-
ways disabledfor processing,unableto consumethe pending message Mutatis
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mutandis, this is what the secondaxiom sas for messagealelivery. These ax-
ioms capture assumptionsthat can be classi ed in betweenthose of perfectand
initially perfect bu ers asdescriked by Koymans (1987).

A crucial simpli cation has beenmade here concerningmessagepassing.
We should have treated the fact that messagesnay be exdangedin sequence
or concurrerily and someof them could be lost or duplicated in this way. The
usualtreatment of this problemis to attach tagsto messagesothat they become
distinct from ead other. To avoid obliging the speci er to dealwith sud details,
a logical treatment could have beende ned here, much in the way that object
naming is dealt with through auxiliary attributes. Details are omitted.

All the propertiesdiscussedbove have alreadybeenstatedin the literature
on the actor model, e.g. by Clinger (1981), Hewitt and Baker (1977), despite
the lack of a formally stated axiomatisation. Hereafter, we namethe full set of
logical axiomsas Ax def f L1-4, O1-12, V1-4 , F1-2g. The setAx, on the other
hand, cortains only the axioms with barred labels, wherein logical attribute
symbols do not appear. The axiomatisation of the actor model allows us to
derive the following more or lessstandard temporal logical rules for reasoning
about the concurrent behaviour of object comnunities:

Prop osition 3.2.4 (Deriv ed Rules of Inference) Given an actor speci ca-
ton = (, ), = (, A, ), the following inferencerules are derivable for
existing objectsin the community, provided that fk; ny; n,g mee T, prand
g are local state formulas parameterisedby n;, and p, is a local state formula
parameterisedby n;:

(EXIST ) 1: po[k]! 9w W:new(b;k;\fb)
2 pmlk]! q_ 9% ninew(c;k;w)
c2

b2 ly
Plk] ! XG(pu[K]! o)

\/ N/

(SAFE) 1 Y 8w, nib(w)! ¢ (INV ) 1: Y 8% niic(w)” q! Xq
Iy c2 ¢
2: 8% niic(ve) * q! X
I CORN® q q! Gq
Gq

N/

(RESP) 1. = 8w nic(w)” pulva]! X (pulve] _ nazd(va))

c2 ¢
2: npd(ve) ! F(dlval)
3 pafval! FE(ni:d(va))

ni:deliv (d;va) ! X(F(pu[val) ! F(a[val))

d2 |,
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AW

(COM) 1 8w npc(we)” pulval! X (pulval _ nu:deliv (d;va))

2: nclz:dceliv (d;va) ! F(oval)
© pu[va] ! FE(ni:deliv (d;vg))

d2 . ¢ and
a2 nz:isend ding;vg (! )X (F(pulval) ! F(dlval))
(NRESP ) 1. pz[n1]! 9% nanew(b;ng;w)
2: 9vp nib(wp) ! 8vy pifval
30 npd(va) ! olvg]
4: 9n n:deliv (d;vg) ! X (qva])
b2 1. 5 nud(va) ! X(pulval _ dlval)
d2 1, pe[na]! XG(palva]! (: ni:d(ve))W (ny:deliv (d;vq)))

(NCOM ) 1 p2[ni] ! 9% nainew (b;ng;wy)
2:9v, nib(vp) ! 8vg pafval

3 nydeliv (d;vg) ! gfvg]

4:9n n:send d;nq;vg (! )X (ova])

d2b§ . and 5:nydeliv (dive) ! X (Palva] _ dlval)
d2 |, p2[ni]! XG(pilval! (c nideliv (d;vg))W (9n n:send d;ng; vy ()))

The rules above can be derived using the axiomatisation of the branching time
logic and our logical axiomsabout the actor model. Theserules are more corve-
nient to usebecausehe logical attributes have beeneliminated. Rule EXIST ,
basedon the fact that a name cannot be reusedonceit is given to someactor,
guarartees a local safey property from the con guration of the actorsin the
ervironment. SAFE and INV are the usual rules for verifying safety and in-
varianceproperties. RulesCOM and RESP capture the fairnessrequiremens
on actor behaviours. They should be applied to verify that the consequences
of delivering or consuminga messageare ewvertually obtained wheneer the re-
cipient actor becomesenabledoften enoughto guarartee the occurrenceof the
respective evert. The slightly more complexrulesfor absenceof comnunication
and response, NCOM and NRESP , respectively, needto be ground on the
creation of new actors since our axiomatisation admits initially presem mes-
sagesaddressedo originally existing objects. Their conclusionsare that, once
the actor is created, wheneer there are no pending messagedor delivery or
processing,messagesvill be delivered or consumedonly if precededby the oc-
currenceof their triggering events. All theseinferencerules may be simpli ed
by a careful instantiation of the adopted sdhematic variables.

The rule COM in patrticular is to be usedin proving propertiesthat arise
from the interaction betweentwo (potertially distinct) actors. The situation
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here diers from that described in (Barreiro et al. 1995), where interaction
is captured via action sharing in a more explicit and unconstrained manner.
Therein, a very strong form of fairnessis proposed, sincein generala shared
action may loosepermissionto happenin somecomponert while obligedto take
place. Consideringactor systems,howewer, sud a fairnessstrengtheningis not
required: an evert must be locally provided by oneactor only and cannot have
its permissionto occur externally constrainedin this way.

3.3 Verication of Local Prop erties

Let usillustrate the application of our speci ¢ proof calculusto the veri cation
of local properties of individual actors. From the BufferCell speci cation,
it is easyto seethat oncea cell is created, it may be consumedand linked
to another cell of the bu er afterwards. If a cell has already been consumed
and it is not the last elemen of the list, the cell will never perform sud local
computationsagain. Hence,the cell will simply forward every incoming message
to the subsequenbu er elememn. The previous property is stated as follows:

T auecer VOID= T A Ist= F! G(: cons” : link(n)) (3.3.1)

As in the examplesof the previouschapter, we split the veri cation of this
property into two parts, which are both deweloped in a similar way. We rst
dealwith the action cons The axiomsin the speci cation are helpful in showving
that void, part of the anteceden of the implication above, is always invariant
after becomingtrue. To begin with the proof, let us examinethe e ect of the
action go over the value of this attribute:

1. go*val = v*void = x*nxt = n™lIst = y! (11.5)
X (val = v*void = x*nxt = n"Ist = y)
2. go*val = v*void = x*nxt = n"lst = y! DIST-ANDX ,HS 1
X (void = x) DIST-IF A, R1-MP , AND-E +
3. val = v! (go*void = x*nxt = nM st = y! Al-l, Al-l , REFL , R1-MP
go*val = vAvoid = x*nxt = nMIst = y) AND-R , DIST-IF A, HS +
4. val = v! LTRAN , R1-MP 2,LTRAN
(go™void = x*nxt = nMIst = y!' X (void = X)) R1-MP ,R1-MP 3+
5. go® void= X" nxt = n"lIst=y! GEN- 8 4, EX C-89, R1-MP
X (void = x) NV OID , R1-MP +
6. nxt = n! (go®void=x"Ist=y! Al-l, Al-l , REFL , R1-MP
go™ void = X" nxt = n"N Ist = y) AND-R , DIST-IF A, HS +
7. nxt = n! LTRAN , R1-MP 5, LTRAN
(go™ void = x "M Ist=y ! X(void = X)) R1-MP , R1-MP 6+
8. goMvoid= x"lIst=y! GEN- 8 7, EX C-89, R1-MP

X (void = x) NV OID , R1-MP +
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9. Ist=y! (go” void = x ! Al-l , Al-l , REFL , R1-MP
go”™ void = x " Ist = y) AND-R , DIST-IF A, HS +
10. Ist=y! LTRAN , R1-MP 8, LTRAN
(go”™ void = x ! X(void = x)) R1-MP , R1-MP 9+

11. go”™ void = x ! X(void = x) GEN- 8 10, EX C-89, R1-MP , NV OID , R1-MP
12. go*void=T! X(void=T) GEN- 8 11, A19- 8, R1-MP

The rationale behind the veri cation of the following two sertencesis the
sameasadoptedabove. Hence,the respective derivations can safelybe omitted.
Then, we are allowed to conjoin theseand sertence(12) abovein orderto obtain
the required premisefor an application of rule INV , completingin this way the
veri cation that void is always invariant after becomingtrue.

13. link(n)~ void=T! X(void=T) from 11.8
14. cons! X (void =T) from 11.6
15. cons® void=T! X(void=T) AND-L 14
16. void=T! G(void=T) AND-I 12, 13; AND-I 15;INV

Now we have to ensurethat a bu er cell cannot be consumedmore than
once. The following implication can be usedto simplify considerablythe speci-
cation axiom involved:

(: (cons_send reply; n;v ())) W (get(n)” val = v~ void = F~: cong !

(: consW (get(n)”~ void = F~: cong (3.3.2)

This sertenceis provablebasedon MON-GW , which capturesthe monotonicity
of the connective W . The main derivation proceedsas follows:

17. cons! (11.14), D15-P , AND-E , (3.3.2),
X((: congW (get(n)” void = F”: cong) R2-G , MON-GX , R1-MP , HS +
18. (: congW (get(n)” void = F~: cong ! REFL , D10-W , RPL-UF , OR-R
F(get(n)”~ void = F~: cong _ G(: cong REFL , OR-R ,OR-L , HS +
19. F(get(n)~ void = F~: cong ! bool Ax, AND-L , R2-G
F(: void = T) MON-GF , R1-MP +
20. (: congW (get(n)” void = F~: cong ! INVE , R1-MP 19, RTRAN , R1-MP
(G(void=T)! G(: cons) R1-MP , D3-OR , D9-G , HS 18+
21. X((: congW (get(n)” void = F~: cong) ! R2-G 20, MON-GX , R1-MP
(XG(void=T)! XG(: cong) MON-GX , HS +
22. cons! XG(void=T) R2-G 16, MON-GX , R1-MP , HS 14
23. cons! XG(: cong HS 17,21; PERM , R1-MP

HS 22,CONT , R1-MP +

The action consdoesnot happen spontaneously Indeed,it is causedby the
consumptionof a messageayet. Basedon the logical axiom O12, which forbids
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the occurrenceof local computationsin parallel with messageonsumptions,and
L1, which forcesead actor to have an encapsulatedstate, we take advantage
of this causality relation to relate the actor state and the occurrenceof local
computations:

24. get(n)”val = v void = F ! DIST-ANDX , (11.11), HS
X (cong DIST-IF A, AND-E +
25. val = v! (get(n)”void = F! Al-l , Al-l , REFL , R1-MP
get(n)” val = v~ void = F) AND-R , DIST-IF A, HS +
26. val = v! LTRAN , R1-MP 24,LTRAN
(get(n)*void = F! X (cong) LTRAN , R1-MP , R1-MP 25+
27. 9v val = v! (get(n)*void=F! X(cong) GEN- 8 26, EX C-89, R1-MP
28. get(n)~ void = F! X(con9 NV OID , R1-MP 27
29. G(:cong! G(void=T! :cong Al-l , R2-G , MON-G , R1-MP
30. XG(:cong! XG(void=T! :cong R2-G 29, MON-GX , R1-MP
31. G(cons! XG(void=T! : cong) HS 23, 30; R2-G
32. get(n) ™ void = F ! MON-GX
XX G(void=T! :cong R1-MP 31,HS 28+
33. get(n) ~ void = F ! 012, A19- 8
. cons” : link (k)™ : go HS, AND-L +
34. get(n) ™ void = F ! DIST-ANDX , DIST-IF , HS, DM , HS 33
X (void = F) L1, D3-OR , HS, R1-MP , AND-E +
35. get(n)”~ void = F! X(void = F” cong AND-R 28,34,DIST-IF A, HS
36. (cons! void= F)! (cons! :void=T) bool Ax, LTRAN , R1-MP
37. void= F~ cons! (void=T! :cong Al-l1 , AND-E , HS 36,INVE , HS
38. get(n) ~ void = F ! R2-G 37, MON-GX
X(void=T! :cong R1-MP , HS 35+
39. get(n) ~ void = F ! AND-R 32,38;FIX-G , R2-G
XG(void=T! :cong MON-GX , R1-MP , HS +
40. get(n)~ void = F! : cons DIST-IF A, HS 33, AND-E
41. get(n)~ void=F! (void=T! :cong Al-l , HS 40
42. get(n)”~ void=F! G(void=T! :cong AND-R 39,41;FIX-G , HS

We wish to concludethe proof that cellsin the void state can newer be
consumedagain. Note that this is true from the initial instant onwards. So, we
candewlop the remainderof the proof basedon the speci cation axiom (11.14),
which requiresthat sincethe beginning of time no get messagebe processed
beforethe actor birth:

43. beg! (11.14), D15-P
(: congW (get(n) » void = F~ : cong AND-E , (3.3.2), HS +
44. beg! OR-L 42,D10-W
G(void=T! :cong_(void=T! :conguU(:> ) TRAN-W  43,D10-W +
45.  F(> )! D3-OR 44,PERM , R1-MP
(beg! G(void=T! :cong) RPL-UF , INVE , R1-MP , HS +

46. beg! G(void=T! :cong D9-G 45,G>, R1-MP
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47. void=T! : cons R3-b egG 46
48. G(void=T)! G(: cong R2-G 47, MON-G , R1-MP
49. void=T! G(: cong HS 16, 48

In a similar way, it canbe showvn that * gecer Ist=F! G{(: link(n)). Conjoin-
ing these partial results basedon AND-L and DIST-IF A, we concludethat
(3.3.1) is derivable using DIST-ANDG . [

The exampleabove senesto illustrate important peculiaritiesin the ver-
i cation of local safely properties of actors. Essemially, the same principles
proposedin the previous chapter can be usedto start this process. Note for
instancethat, due to the locality and local sequetialit y assumptions,we could
verify a bu er cell invariant using a caseanalysisargumert basedon the e ect
of eat local computation over the attributes. Howewer, becausethe occurrence
of sudh local everts is normally determinedby the consumptionof messagesye
alsohave to rely on causality axiomsto link both kinds of occurrence.

It is alsointerestingto note that, becausewne proposea setof logicalaxioms
which takesinto accoun the existenceof a commnunity of actors, here we have
to particularise someof these axioms by removing the name of the respective
actor from ead expressionn order to verify local safey properties. Becauseno
interaction is involved, we may usejust the set of axiomsin Ax together with
SAFE and INV , sincelogical synmbols are introduced and axiomatised by the
remaining logical axioms and rules preciselyto support interaction. This whole
processseemdo bein cortrast to the work of America and de Boer (1996), who
adopt a three level axiomatisation and lift local seriencesto intermediate and
global cortexts wheneer necessary

3.4 Comp osition of Actor Speci cations

In Section3.2.1we discoveredthat, to give an accoun of what is usually consid-
eredto be a complexcomponert in the actor model, we needat leastto be able
to put distinct signaturestogether to represen the linguistic structure of yet
another componert or an ertire system. More generally the view that complex
descriptionsshould be de ned in terms of simpler descriptionsput together has
beendeweloped within the theory of Institutions by Goguenand Burstall (1992)
and requiresthe de nition of basic ertities to be regardedas designunits. In
our case,they will be actor speci cations.

It is also necessaryto provide meansof connecting object descriptions
to ead other. Traditionally, in a proof-theoretic approad to design, this is



112 Chapter 3. DesigningOpen Recon gurable Systems

achieved by providing translations betweenthe languageof the related theories
(Maibaum and Turski 1984). If a synbol-to-symbol mapping, i.e., a morphism,
betweentwo actor signaturesis given, the existenceof a compositional relation
of translation betweenthe respective languagescan be guararteed.

De nition  3.4.1 (Actor Signature Morphism) Giventwo actor signatures
1=( 1,Ay, 1)and ,=( 2, A, »), anactorsignature morphism : !
> consistsof:

a morphism of algebraic structures : ! > sudh that (addr) =

addep;

foreanf 2 Ay .., anattribute symbol  (f): (s)) it (Sn)!
(s) in Az;

foreahhc2 an actionsynbol (¢): (sy) ::: (sp) In

s1;:58 ni !

suhrthat: () (o) o () (e) i) (e ea) e o
V) () s ™ Cu) o andv) (ne) e

It is straightforward to provide a compositional de nition for the translation of
classi cations, terms, formulae and setsthereof under . ]

Translationsthat necessarilyrelate the distinguished synbol of ead signature,
as de ned above concerningaddr, have been called pointed morphismsin the

literature (Parisi-Presicceand Pierantonio 1994). Sincerenamingis possiblein

translating the other signaturesynbols, morphismscapture the relabelling oper-
ation proposedby Agha (1986)to equaliseiderti ers in distinct descriptions. In

addition, it is possibleto usesignature morphismsto allow someexternal sym-
bols, menmbersof ., to becomelocal aswell. This stemsfrom the fact that, in a
complexcon guration, there may be ewerts required from the environmen of a
componert which are not provided by the ervironment of the whole con gura-

tion, becausedhey are ensuredby another componert of the samecon guration.

It is not dicult to seethat any given actor signature morphism inducesother
morphismsbetweenthe correspnding extendedand parameterisedsignatures,
by translating their additional symbols accordingto the way the original sym-
bols are translated by the given morphism. This meansthat the specier, in

de ning a morphism to connecttwo signatures,doesnot needto be concerned
with the new synbols introducedin their extensionor parameterisation.

We would like to be always ableto conmbine any nite number of actor sig-
naturessoasto ensurethe necessarystructure to support interaction. This can
be accomplishedf we can shaw that actor signaturesand morphismsdetermine
a nitely co-completecategory asexplainedin the previous chapter:
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Theorem 3.4.2 (Category of Actor Signatures) Actor signaturesand mor-
phismsconstitute a nitely co-completecategory Sig”° .

Proof: To ensurethat we have a category we must showv that identities exist
and composition is assaiative. Consideringthat morphisms are set-\aluated
functions, the only di cult y that may arisein verifying the existenceof idertit y
is due to the non-disjoint setsof action synmbols. But, for 4 ifc2 e (8)
id(c) 2 ¢, from (ii) and (iii) in the de nition of signature morphisms. Now,
if it is alsothe casethat c2 |, (b) id(c) 2 ,,, from (iv) and (v). Due to
(@) and (b), id(c) 2 ¢, Wheneerc?2 .. The sameargumert appliesto
anyc2 (e e 1, andthereforeSig”"® admits idertity, the constart function
on sets. The assaiativity of signature morphisms follows directly from their
set-theoreticde nition.

The initial elemen of this categoryis -, = ((faddmg, f g), f g,f g). Givena
pair of morphisms !* 4, !? , their pushoutis de ned up to isomorphism

by any pair of morphisms ;" 9,1 Osudithat S°= 10(S;) -5 2(S2),

O= 1o( 1) - 2o( 2), A%= (A1) —(a) 20(A2)and %= 1o( 1) - 2( 2),
where™= 9 ;= 2 , The existenceof the initial elememn and pushoutsis
su cient to guarartee nite co-completeness. B (Sig”°t Category)

Speci cation morphismsinducedby the signaturemorphismsabove do not
capture the expected enrichmert of object behaviour as usual in Institutions
(Goguenand Burstall 1992). This happensbecausethey do not translate our
additional logical axioms, which are neededto guarartee a correct collective
behaviour. This shows that sudx morphismsdo not determine interpretations
betweentheories. To support this, the following morphismsare used:

De nition  3.4.3 (Actor Specication Morphisms) Giventwo actor spec-
icatons ;= ( 1, 1 and ,=( ,, ), aspxication morphism : ;!

» IS a signature morphism lifted to seriencessud that = , (g) for ewery
g 2 1 [ AX 1r U]

The inclusion of the translated logical axioms (Ax ,) into , iS necessaryas
they represem properties which are not always a consequencef Ax ,, since
some of these axioms rely on the existenceof the original signature symbols
only. Oncethe signatureis augmerted with new symbols usinga morphism, the
respective properties may fail to hold. The locality property, for instance,is not
presened by the translation, as shovn by Fiadeiro and Maibaum (1992).

Our nite co-completenessesult concerningthe category of actor signa-
tures easily lifts to categoriesof extendedand parameterisedsignatures. Much
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in the sameway, it canbe transported to a categoryof actor speci cations with
the morphismsde ned above:

Prop osition 3.4.4 (Category of Actor Specications) Actor speci cations
and morphismsconstitute a nitely co-completecategory Spec”® . [

A comparisonbetweenour notion of composability and that of Agha et al.
(1997) and Talcott (1996b)is in order. As discussedin the previous chapter,
composition is realisedhere by computing co-limits, or pushoutsin the particu-
lar caseof two connectedspeci cations. Given a set of speci cations with their
pairwise sharedsub-commnerts xed, pushoutsof speci cation morphismsare
comnutative and have ( -, ;f g) astheir identity. In addition, all their possible
compositionsin any order are isomorphicamongthemselhes, which yields asso-
ciativity up to isomorphism. Newertheless,theseare the only similarities with
their sematic notion. The composability notion in their work is dynamic and
fails to put together componerts having in commonidentical namesof existing
actors. This is syntactically immaterial, though, sincethere is a canonicalway
of relating actor syntax and semartics, as hinted by Agha (1986) and followed
here, obliging the composedspeci cations to entail con gurations with disjoint
sets of existing actor addresses. We treat the dynamic composition of actor
componerts while deweloping rely-guarartee proofs, as outlined in Section3.5.

We alsoneedto comparethe composition of actor speci cations usingthe
morphisms above to the similar usageof categoricalnotions in Chapter 2. It
is particularly important to mertion that, becauseof the implicit parameteri-
sation of actor signaturesby a sort of mail addressesand the restricted use of
logical action symbols to support interaction, it is not possibleto expressat the
local level any form of extra-logical sharing of signature symbols. This means
that at this point interaction is supported logically, always by the syndronised
actionsintroducedin the extensionof actor signatures,which may occur simply
becausethe interaction is betweenactors belongingto the samecommnunity or,
conversely becausethey belong to distinct comnunities and the designerde-
cidedto de ne morphismsto support their interaction. This is in keepingwith
the local discipline imposedby the actor model, which precludesany form of
interaction other than by object creation and asyndironous messageassing.

Using the constructions described above, we can now study communities
of heterogeneousactors. A good exampleis obtained by composing a bu er
as descrited in Section3.2.1,a processorand a set of terminals to represenh a
uniprocessotime-sharingarchitecture. The intendedbehaviour of the respective
componert, whosespeci cation shall be called UTSA , is to allow commands



3.4. Composition of Actor Speci cations 115

Actor Pr ocessor
data typ es addr,cmd (NEX ; BEG : cmd)
attributes in; id : addr, prv : cmd
actions pro(addr,addn : local + extrn birth ;
exdint) : local computation ;
nop; rec(int) : local + extrn message;

Actor Terminal req(addn : extrn message
data typ es addr,cmd axioms n;p:addrv:cmd
attr_lbutes bf : addr pro(n;p)! id = n”in = p” prv = NEX (13.1)
actions pro(n;p) ! X (exqBEG) " send nop;n ()) (13.2)
ter(addn) : local + extrn birth ; exqv) ! X (prv = v) (13.3)
rd(cmd) : local computation ; exdV)"id = nAin = p!' X (id = n~in = p) (13.4)
tr(cmd) : extrn message nop”id = n2in = p! X (send req;p;n () (13.5)
axioms n :addrv:cmd nop”id=n! X(send nop;n () (13.6)
ter(n)! bf =n (12.1) req(v) ! X (exdV)) (13.7)
FG(8v :rd(v)) (12.2) exqv) req(v)_9n;p pro(n;p)"v = BEG (13.8)
rd(v)"bf = n! X (bf = n) (12.3) send nop;n ( )id = n*9p pro(n; p)_nop (13.9)
rd(v)"bf = n! X(send tr;n;v () send req;p;n ( )nop”id=n"in=p (13.10)
(12.4) E(reqv)) | v 6 NEX (13.11)
send tr;n;v (- )rd(v) * bf =n  (12.5) prv & nex! FE (deliv (nop)) » FE (nop) (13.12)
End prv 6 NEx”~v 6 NEx ! FE (deliv (req(v))) (13.13)
prvé NEX”"v 6 NEx! FE (rec¢(v)) (13.14)
End

Figure 3.2: Simpli ed speci cation of terminals and processors.

typed by terminal usersto be always processecevertually. The speci cation of
terminal and processoractors for this purposeappearin Figure 3.2.

A terminal becomesaware of the mail addressof a cell which will sene
asa bu er at creationtime (12.1). Afterwards, the terminal always transmits
typed commandsto this initial bu er cell sothat they can wait for processing
(12.4). The readingcapability of terminals, however, is nite accordingto (12.2).
Processorsjn turn, have a more complexbehaviour sincethey have to request
commandsfrom the bu er at any possibleoccasion(13.5). Valid commandsmay
always be evertually deliveredto the processorafter initialisation (13.13). That
is, any commandexceptNEX, which standsfor a not executablecommand,can
be deliveredto the processorafter the rst BEG is executed.Oncereceiwed, any
commandis subsequetly executed(13.7). The computation cycle of the pro-
cessoralternatesamongperforming no action, in which casetime simply passes
without witnessingthe occurrenceof any action, and processingthe messages
nop (13.5,13.6),rec (13.7) or the local computation exc(13.3,13.4). This cycle
beginsjust after the occurrenceof the actor birth denotedby the action symbol
pro (13.2).

Clearly, the actors above cannot work as a single componert unlessthe
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(@) UTSA
1 % 2
@
@
Componentl Component2
11 %@1;2 2;1 %@%;2
@ @
Terminal BufferCell Pr ocessor
1; 1;2 2;1@ 2:2
@ @
Connectorl Connector2
(b) Terminal  BufferCell
1,1 L 1,2 . © 1 11 .
tr | x | put ter ———— terminal
BufferCell Pr ocessor pro li processor|
21 | | 22 . .
get Ly o req nil —=—2L puer
21 | | 2,2 _ 1 12
reply 1 Z | rec

Figure 3.3: Static con guration of the multi-tasking system.

proper interconnectionsbetweenthem are provided. Morphismsestablish\phys-
ical sharedchannels"to make messaggassingpossible,asde ned in Figure 3.3,
part (2). Componentl , Component2 andUTSA , which result from the com-
position of the three given speci cations, are all de ned up to isomorphismby
the pushout of the given morphisms. This meansthat any name for eat of
their symbols su ces aslong as the symbols to be sharedand only them are
equalised. They are de ned accordingto the two connector speci cations and
the morphismsin Figure 3.3, part (b). The signatureof Connectorl cortains
one external messagesymbol only, x, which is mapped to the tr action of ter-
minals and to the put action of bu ers. Connector2 hastwo sud synbols,y
and z, which are mappedto getand reply at the bu er sideandto reqand recat
the processorside, respectively. The set of axiomsin both connectorspeci ca-
tions is empty. Assumingthat the underlying algebraicmorphismsmap the mail
addresssort accordingly and assaiate integersto commands,the morphismsin
the gure clearly satisfy the requiremens of De nition 3.4.3.
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3.5 A Rely-Guaran tee Design Discipline

Moving away from the traditional direct approad to speci cation and veri ca-
tion appearsto be inevitable when the featuresof open recon gurable systems
have to be treated. Isolated speci cations establishonly the local properties of
eadt speci ed object. Dynamic (re)con guration and object interaction are two
global featureswhich remain completely untreated in this way. The approad
for treating sud featureswhile preservingthe local designdiscipline is now stan-
dard: Chandy and Misra (1981) proposea rely-guaantee discipline which allows
us to deal with global propertiesin an organisedconditional manner.

Rely-guaranee designis basedon the premisethat speci cation and veri-
cation take placein a cortext wherethe description of componert behaviour is
relativised to take into accourn that of the ervironmert, i.e., their limited inter-
action is descrited explicitly. Either in specifying or verifying someproperties
of a componert, arely clausede nes a property related to the componert which
the ernvironment is assumedto satisfy A guarartee clauseis also usedto ex-
pressthe propertiesrelated to the environment which the componert maintains
provided that the assumptionon the environment holds. The formal semarics
of ead of theseclausesvariesaccordingto the adopteddesigndiscipline and the
mode of interaction assumedn the underlying model. They also provide useful
information that may be helpful in somere nement steps(Jones1983).

Due to our interest in dealingwith dynamic con guration and interaction
of actor componerts while preservingthe discipline for speci cation and com-
position descrilked sofar, we chooseto imposea rely-guarartee discipline in the
veri cation processonly. For a given speci cation and nite setsof formu-
las init , rely, pre, guar and post basedon , we adopt assertionsof the form
init : fpre;relyg fguar;postg meaningthat, given the initial conditions init ,
whene\er the pre-conditionspre are simultaneously establishedand the assump-
tions rely are not violated unlessthe guararteesin guar and a post-conditionin
postare obtained, the guararteesare not violated until and necessarilyincluding
the momert when the post-condition is obtained, for all the post-conditionsin
post Putting Jp def Vf pjp 2 Pg, sut assertionsare formalisedas follows:

De nition 3.5.1 (Rely-Guaran tee Assertion) Givenatheory presetation
= ( ;) inobjSpec’ andinit [ rely[ pre[ guar[ post G() sud that
eat of thesesetsis nite, rely-guaantee assertionsare de ned below:

(D16-R G)Vinit :fpre;relyg fguar; posty def

\]init ! XG(JpreA (Jrely)W (pA Jguar) ! (Jguar)U(pA Jguar)) ]
p2 post
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If comparedto other rely-guarartee assertionsavailable in the literature,
our de nition is rather unusual. The initialisation condition is normally treated
elsewhere: Pnueli (1985a) considersthat it is provided together with process
composition while initialisation is treated asin VDM, separatedfrom the opera-
tions, in the extensionof this method proposedby Jones(1983). Sincewe allow
any temporal formula in the set of initialisation conditions, they can be used
to capture assertionbases,which distinguish comrmunication ports from other
variables as proposedby Pandya and Joseph(1991). Rely and pre conditions
appear conjoined as an assumptionformula in the logical approad advocated
by Abadi and Lamport (1995) and by Jonssonand Tsay (1995), much in the
way that guarartee and post conditions are conjoinedin a commitmert formula.
The separationadopted here seemsto help emphasisethe role of eat distinct
set of propertiesin the veri cation process. The distinctions we make are also
justied by our desireto usejust the rely-guarartee assertionsabove to deal
with dynamic con guration and interaction. A more pragmatic reasonjusti es
the adoption of a set of independerily realisablepost-conditions. Most authors
considerthat, if system behaviour or speci ed operation terminates, this de-
termines a de nite state satisfying all the post-conditions (Pandya and Joseph
1991). A wait clauseis sometimesintroducedto expressan invariant over the
states of non-terminating computations (Cau and Collete 1996). Becausewe
are dealing here with open systemswhich are newer required to terminate but
in generalevertually validate ead of a number of properties, we preferto adopt
post-conditionsin the way de ned above.

The reader may have correctly obsened that with the de nition above
we have attempted to stay as close as possibleto the use of rely-guarartee
constructions in model and processbasedformalisms while taking advantage
of the temporal logical features of our own formalism. Let us examine some
practical situations that normally arise in designing software systemsin this
way. First, note that free variables may appear in the formulas of eah set of
clauses. This is useful, say, in binding actor namesto the speci cations they
comply with. Also note that ead set of clausesmay be empty. In this case,
their respective logical value is equivalent to >, the rely-guarartee assertionis
simpli ed and reasoningbecomeseasier.

Rely-guararee constructionsare interesting not only dueto the additional
expressienessand disciplinethey introduceinto dealingwith globalphenomena,
but also becausethey may be decommsedand reused. A composition rule
is normally proposedto achieve these e ects in the veri cation process. The
following inferencerule plays this role here:
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Theorem 3.5.2 (Compsosition Rule) Given a theory presemation = (,
) in obj Spec® and “frely;guarg[ finit;;pre;postjl i 29 &)
sud that the resulting setis nite, the following inferencerule is derivable:

(COMP ) 1. init 1 :fprey;relyg fguar;postig
2: init »: fprey;guarg frely; postyg

init 1 [ init o:fprec[ pres;rely[ guarg frely[ guar;post; [ postg

Proof: Assumethat p 2 post;. We will shov that the rst premiseregarding
p can be transformed into a rely-guarartee assertionwhich complieswith the
format of the conclusion:

1. Jinit , ! Ass, D16-R G
xG‘(~]pre1 A (Jrely)W (pA Jguar ) ! (Jguar )U(pl\ Jguar ))
2. Jinit 1 ™ Jinit , ! AND-L 1
XGJpres ™ (Frey )W (P Jguar ) ! (Jguar JU(P" Jguar )
3. \]prel n Jpr e A (\]re|y A \]guar )W (pA Jre|y n Jguar) ' Jpr e REFL , AND-L
4. (\]re|y N \]guar )W (pl\ Jguar) ! REFL , AND-L , R2-G
(Irey )W (P” Jguar ) MON-GW , R1-MP +
5. (\]re|y N \]guar )W (pl\ Jre|y A \]guar ) ! REFL , AND-L , R2-G
(Irely ™ Jguar )W (P” Jguar ) MON-GW , R1-MP +
6. Jpre1 A Jprez A (Jrely A Jguar )W (p" Jrely A Jguar) ! HS 5, 4
(Jrely )W (pA Jguar ) AND-R +
7. Jpre1 " Jprez A (Jrely A Jguar )W (pl\ Jrely " Jguar) ! AND-L 3,6
Jpre1 " (Jrely)W (pl\ Jguar )
8. Jinit +  Jinit , ! XG(Jpres ™ Jpre” RTRAN , R1-MP 7, R2-G , EXP-GX
(\]re|y N \]guar )W (p/\ Jre|y N \]guar ) ' (Jguar )U (p/\ \]guar )) Rl'MP , MON-X G, Rl-MP y HS 2 +
9. G(Jrely ™ Jguar) ! Al-l , R2-G , MON-G
G(Jguar ! Jrely " Jguar) R1-MP +
10. G(Jrely ™ Jguar ) ! RTRAN , R1-MP 9
((Jguar U (P Jguar ) ! (Irey ™ Jguar YU (P” Jguar ) MON-GU , R1-MP +
11. G(p" Jrely ® Jguar ' P Jguar) REFL , AND-L , R2-G
12, (Jguar )U(P" Jrely » Jguar ) ! (Jguar JU (P Jguar ) MON-GU , R1-MP 11
13. G(Jrely ™ Jguar ) ! PERM , R1-MP 10, HS 12
((Jguar U(p” Jrely n Jguar) ! (Jrely A Jguar U(p” Jguar ) PERM , R1-MP  +
14. Jrey ™ Jguar ! Al-l , RTRAN , INVE ,
(P™ Jguar ' P Jrey ™ Jguar ) HS, D4-AND , HS +
15. G(Jrey ™ Jguar ) ! R2-G 14, MON-G
G(p" Jguar ' P" Jrey Jguar) R1-MP  +
16. G(Jrely ™ Jguar ) ! MON-GU , HS 15, LTRAN
((Jguar )u(ph Jguar ) ! (Jrely ™ Jguar )U(pn Jrely ™ Jguar ) R1-MP , HS 15+
17. (Jre|y N Jguar )U (p/\ \]re|y N Jguar) ' Al'l
((Jguar )U(P™ Jguar ) ! (Irey ™ Jguar )U(P" Jrely ™ Jguar ))
18. Jpr e n \]prez A (\]re|y A Jguar )W (pA Jre|y A \]guar ) | OR-L 16, 17
((Jguar )U (pA Jguar ) ! (Jrely N Jguar )U(pl\ Jrely n Jguar )) D10-W , AND-L +

19. Jinit o " Jinit , ! XG(Jpre, ™ Jpre,”
(Jrely " Jguar )W (p/\ Jrely " ‘]guar) ! (Jrely " ‘]guar )U(pA ‘]rely " Jguar ))

The last step in the derivation above is justied by the following sequenceof
labels: A2-1 , R1-MP 19, R2-G, EXP-GX , R1-MP , MON-X G, R1-MP ,
HS 8. Repeatingthe sameprocesdor all the elemerts of post; and dewelopingan
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analogousargumert regardingpost,, we concludethat the last sertenceabove is
derivable for all the elemens of post; [ post. Note that this processterminates
becausehe involved setsare assumedo be nite. Consideringthat Jp, * Jp, $
Jp,ip, for any P; 2 finij; pre;rely;;guar;;postg, 1 i 2, an application of
D16 completesthe derivation of the conclusionof COMP . B (COMP)

Jonssonand Tsay (1995) have remarkedthat composition rulessud asthe above

are a simple consequencef the standard meaningof rely-guarartee assertions,
which requiresthe guararteesto be valid when ead post-condition is obtained
regardlessof the validity of the assumptionsthen. Our De nition 3.5.1captures
this meaningincluding Jguar in the secondargumert of both W and U. Note

that the rst connectiwe is usedin the antecedemn formula of the de ned implica-

tion becausetherein the guararteesand the post-condition cannot be assumed
to occur and the de nition of unless,D10-W , ensureghat this is the case.The

until connective adopted in the consequen of the sameimplication says that

theseformulas evertually obtain, accordingto RPL-UF . The theorem above
allows us to infer a more widely applicable composition rule asa corollary:

Corolary 3.5.3 (General Comp osition Rule) Given a theory presertation
= (, ) in obj Spec’ and the nite setsfinit; pre;rely; guar; postg [

finit;;pre;rely;;guari;postjl i 29 G(), provided that the following

side-conditionsare met, the subsequeninferencerule is derivable:

init 1[ init, init pre[ prez pre rely, rely[ guar;
guar guari[ guar, post;[ post, post rely; rely[ guary;

(GCOMP ) 1. initq:fpreg;rely;g fguary;postg
2: init »: fpres;rely,g fguary;postyg

init : fpre;relyg fguar;posty

Proof: The proof is deweloped basedon the application of COMP usingthe side
conditions erumerated above and on the re nement of the given premisesusing
the monotonicity of sometemporal connecties. B (GCOMP)

This rule is moregeneralthan that proposedby Cau and Collete (1996)for com-
posing rely-guarartee assertionsabout syndironous messagepassingprocesses
becausewe do not require that eat premiserefersto a single object only. An
analogueto their rule is obtained by providing two connectedspeci cations |,
1 i 2,plusthe respective morphismsin away that their pushoutdetermines
;Init, pre, rely;, guar; and post cortain only local formulas parameterised
by n! 2 Vaqer @and n? appearsfreein ;. Mapping assertionsabout eat speci -
cation into  using the given morphisms,GCOMP can be applied. Typically,
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init or pre would cortain aformula liken!=n3 ,,1 i 2, to realisethe par-
allel composition of the speci ed objects. More elaborated rules may deal with
hidden symbols which we do not feel necessarherein view of the possibility of
organising actor speci cations in designstructures supporting hidden features,
in the way originally suggestedoy Fiadeiro and Maibaum (1994). We will have
an opportunity to illustrate the useof theserules and disciplinesin Chapter 5.

Now we may concludethe comparisonof our constructions and the dy-
namic algebraic operations for manipulating actor componers de ned by Tal-
cott (1996b). The simplestsud an operation is hiding, which is appraximated
hereby postulating aninitial actor con guration usinginit and preverting some
objects from receivingmessagefrom the outside environmert, usinginit orrely
depending on whether this constrairt is to be static or dynamic. Renamingis
another algebraic operation. It does not have a syrtactic courterpart but is
ensuredwheneer we refrain from using constarts of type addr. Finally, paral-
lel composition is obtained as outlined above. That somecomponens are not
composableis re ected here by the impossibility of nding non-empty sets of
equalisingassumptionsof the kind described above while preservingthe truth
of the anteceden of the resulting assertion. We dewote the following sectionto
an exampleclarifying the veri cation of rely-guarartee assertions.

3.6 Verication of Global Prop erties

If the uniprocessotime-sharingarchitecture descrikedin Section3.4isto presen
the behaviour outlined therein, that usercommandsare always processece\ven-
tually, we must stipulate under which circumstancesthis property is expected.
Clearly, there are situations in which this is not established. Assumethat a
nite number of terminals is connectedto a singleprocessowia abu er. This is
the minimal condition we requireto ensurethat the property above makessense.
Without lossof generality, we postulate that there are exactly two terminals in
this con guration. If other arbitrary objects apart from the processorcould re-
move commandsfrom the bu er, if this last componert could ignore commands
from a speci ¢ terminal inde nitely, the characteristic property above would not
be established. Considering sud properties as part of a rely-guarartee asser-
tion, we can prove that the characteristic property is indeedobtained. Adopting
the translations of birth action symbols in Figure 3.3, part (c), the de nition
8x :y p[x]df8x Reachy;x)! p[x]anda similar onefor 9, both basedon an
auxiliary action synbol Reach we state this assertionas follows:
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Assertion C
init  k:new (bu er ;n);k:new (processorm; m; n); k:new (terminal;t;;n) (1 i 2);
G(8v 8y:n y:put(v)! XG(:y:put(v));
G(8y (9v yisend put;mv () ! y=t1_y=t);
G(8v 8x;y:n 9z:x z=y_(:x:send put;x:nxt; v ))W (y:send put;y:nxt; v ()))
rely 8y (9x:n x:get(y))! y=m
pre 9y yrd(v)"(y=t1_y=ty);v6 NEX
post m:exqVv)

Assertionssud as C have the meaningdescrited in the previous section.
The rst three formulas under init say that the bu er, processorand terminals
are consideredto be initially created and linked. This illustrates that the de-
signer, in order to be able to verify any global property, is required not only
to provide morphisms,allowing actorsin di erent communities to sharepart of
the samelanguage,but alsoto ensurethe existenceof some\logical" channels,
nameswhich bind actorsto eat other and enablemessaggassing. Init says in
addition that cellsof the bu er canonly consumeead distinct commandonce,
a simplifying assumption,that put messagesare dispatched to the initial bu er
cell n solely by one of the two terminals, and that ead cell dispatcthesa com-
mand to the subsequenbu er elemen only if all the previouscellsof the bu er
dispatched the samecommandin the past. The last two properties are static
con guration constrairnts. The dynamic assumptionrely on the environmen is
that the bu er is only requestedto send commandsto the processorm. The
formulas under pre and post say that, providing the reading of an executable
usercommandfrom someterminal, the commandis ewvertually processedNote
that no guararteesare asserted(thus the respective set of formulas is empty)
becausewe are only interestedin verifying the post-condition. One guarartee
o ered by the speci ed componert which we could verify is that all processor
requestsare addressedo the bu er, a direct consequencef (13.13).

It is important to clarify that the assertionabove is expectedto be deriv-
ablein an extensionof UTSA (namedUTSA ;) in which the meaningof Reach
is speci ed. We adopt the axiomsin Figure 3.4. Sud auxiliary de nitions are
convertional in formal methods, especially in model-basedformalisms (Jones
1990). Here we have to be careful in using sud constructions since our sen-
tencesare required to belongto the languageof sometheory presetation. In
turn, the veri cation of actor componernt properties often calls for global def-
initions sud as that of Reach which are not allowed by parameterisedactor
speci cations. Moreover, any sud auxiliary symbol would possesshe additional
properties ertailed by our actor model axiomatisation. This is not desirablein
practice. To overcomethis problem, we rely on a functor mapping presenations
of our M SBTL extensioninto this underlying temporal logic. The functor maps



3.6. Veri cation of Global Properties 123

beg! :Reachx;y) (3.6.1)

k:new (nil;x) _ 9v k:new(item;x;Vv) ! X (Reachx;x)) (3.6.2)

(k:new (nil; x) _ 9v k:new (item;x; v)) » Reach(y;k) ! X (Reach(y;x)) (3.6.3)

k:new (nil;x) _ 9v k:new (item;x;Vv) _ I nv(Reach(x; x)) (3.6.4)

(k:new (nil; x) _ 9v k:new (item;x; v)) » Reach(y;k) _x 6 y” Inv(Reach(y;x)) (3.6.5)

Figure 3.4: De nition of Reach

extra-logical axiomsvia the idertit y and transformsthe logical axiomsinto sen-
tencesof the target theory preseration. Speci cation morphismsare mapped
accordingly In this way, we can still useour derived inferencerules as a valid
reasoningtechnique. Theory presetations allowing de nitions asin Figure 3.4
and assertionslike C are consideredto be in an extensionof the functor image.
Hereafter, we ignore sud technicalities for the sake of simplicity.

What is assertedby C is an instanceof the so-calledFair Merge Problem.
That is, the processingof sequence®f commandsfrom ead user must be fair;
in other words, that eat of them must not have the completion of its execution
inde nitely delayed. To understandthe validity of this assertion, rst note that
the respectively linked bu er cellsare organisedas a reversedqueue. Eac cell
either processesncoming message®r theseare forwarded to the remainder of
the bu er, becausehe cell hasalready beenconsumedor is not the last elemern
of the queue,or elseeat messages ignored, becausethe ertire bu er is empty.
Now, becausethe bu er is required by init to receive messagegrom the two
terminals only and theseactors evertually stop producing commandsaccording
to (12.2), the bu er itself will always be nite in any behaviour, meaningthat
commandswill be fairly storedin and retrieved from this componert. Further-
more, sinceour assumptionrelyis that the bu er is hiddenfrom the ervironmernt
with respect to receiving get messagesonly the processorwill recurrertly re-
guest commandsand possibly receiwe a reply from the bu er. Each command
dispatched by a terminal will be evertually processedn this way.

The explanation above doesnot clarify how the formulas in our assump-
tion were chosennor the criteria for their placemen in one clauseor another.
The init clause should only cortain formulas describing the initial state and
the static con guration constrairts that always hold about the componert. The
pre-conditionsshouldjust trigger the evertual occurrenceof ead post-condition.
Rely formulas are expected to be true until but not necessarilyincluding eah
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of thesepost-condition occurrences.Note that we could have written our perul-
timate initialisation condition as part of our rely assertion. Howewer, sud an
assertionwould be too weak for our purposes:those messageslispatdhed before
the occurrenceof the pre-condition could produceundesirableinterferencein the
behaviour of the architecture. On the other hand, reducing assumptionsto the
local delivery of messagesaswe did in proposingthe rely condition, correspnds
to ground our analyseson the \lo cal time" of ead componert (Clinger 1981).

The rigorous veri cation of the assertionabove is basedon the de nition
of a (relative) well-foundedrelation asexplainedin Section2.7. We proposean
extensionof UTSA ; (hamed UTSA ,) and chooseto include in this extension
the following action symbol de nition concerningbu er cells:

R(n;x;y) $ Reachn;x) ™ Reach(n;y) * y:nxt = x* yist=F (3.6.6)

In general,R doesnot de ne awell-foundedrelation. If wetakeinto accourt just
those cellsreadable from the assumedinitial bu er elemen n, a well-founded
relation is indeedde ned. To verify this, we considerin the sequelthat UTSA ,
is also endaved with an unconstrained exible symbol t of sort addr and that
formulasin ead of the clausesof our assertionare linearly orderedaccordingto
their position in C to facilitate references We omit almost all the details which
are not strictly necessaryfor comprehensionand perform the veri cation in a
relativised cortext, consideringthat all the derived sertencesare always valid
strictly after the occurrenceof the initialisation condition. We are allowed to
reasonin this way provided that we refrain from usingtemporal logical inference
rules. Note that most of our derived inferencerulesarerelative to the occurrence
of the initialisation condition. Relativised rules similar to thosefor introducing
unconstrained exible symbols and well-founded induction can also be shown
admissible.

The two static characteristic properties of exible well-foundedrelations,
irre exivit y and stability, are veri ed asfollows:

[[IRR] 8x : R(n;x;x)

Consideringthat : R(n;x;x) $ : Reachn;x) _ xinxt 6 x _ x:Ist = T, we
sketch this proof as follows, abbreviating as CREAT E(X; y) the formula 9v
x:new (item;y;v) _ x:new(nil;y):

1. x:nil! xinxt 6 x_xist=T (11.1)
2. xiitem(v) ! xinxt 6 x _x:lst=T (11.2)
3. x:go™ (xinxt 6 x _ x:ilst=T)! X(xinxt 6 x_ x:Ist=T) (11.5)
4. x:cons™ (xinxt 6 x _ xist=T)! X(xinxt 6 x _ x:Ist=T) (11.6)
5. x:link(y) $ 9v x:new (item;y;v) (11.13), (11.9)
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6. 9v x:new(item;x;v) ! 9v Xx:new (item;Xx; V) REFL

7. 9v x:new (item;x;v) ! Bv x:new (item;x;Vv) _CREATE(X; x) OR-R 6
8. 9v x:new(item;x;v)! XG? EXIST 6,7
9. 9v x:new (item;x;v)! ? 8, REFL-G , Al1-X

10. 9v x:new(item;y;x)! x6 vy 9, A22-EQ
11. 9v x:new(item;y;x)! X(x 6 vy) 10, RIGID

12. x:link(y)! X(x 6 vy) IFF-E 5, HS 11
13. x:link(y) N (xinxt 6 x _xist=T)! X(xinxt 6 x _xist=T) 12,(11.7)
14, xinxt 6 x _xist=T SAFE 1-4,13
15. : Reachln;x) _xinxt 6 x _x:lst=T Al-l, 14,D3-OR

[STAB] 8xy R(mxy)! X(R(n;xy))

The readeris asked to work out the full proof. Here we just outline the most
important proof steps:

R(n; x;y) (3!'6:6) Reach(n; x) » Reach(n;y) * y:nxt = x " yist = F
(3i3:1) Reach(n; x) » Reach(n;y) * y:nxt = x* y:lst = FA G(: link (k))
INV
(3'6'!1 > G (Reach(n; x) » Reach(n;y) * y:nxt = x” y:Ist = F)

G X (R x; )

To verify the two dynamic properties of well-founded relations, change
termination and anti-progressivenesswe have to dewelop a number of auxiliary
results rst. We begin by showving that bu er cells reathable from n obey a
causallaw which prevernts them from being at the sametime readable from
and related by R to any other xed cell (CA USAL ). Next we show that Reach
as de ned in Figure 3.4 determinesa transitive relation (T- Reach. We also
prove that the directed binary relation determined by R with rst argumen
xed on n is acyclic (ACYCLIC ). Then we proceedwith the veri cation of
TERM and APR OG.

(CAUSAL) 8z:n 8y:z :R(n;zyy)

First note that the following two sertencesare true as a consequencef the
axiomsin Figure 3.1 and 3.4:

beg! ((: Reachz;z))W (: Reachz;y)))W (9k : n CREATE(k;y))
beg! (: R(n;z;y))W (y:new(item;z) » Reachn;y))
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Assumethat Reachz;y) " R(n; z;y) is the case.Hence,k above hasto be equal
to y, but in this casethere would exist two actors z and y which create eat
other and the resulting temporal paradok cortradicts a consequenceof O7a
and EXIST . Generalisingthe negation of our assumptionto all the other cells
reatable from n clearly implies CA USAL .

(T- Reach 8x;y;z Reachx;y)! (Reachy;z)! Reachx;z))

We write the body of the quanti ed formula above as TRAN S(x;y;z). This
sertenceis veri ed usingIND-b egG:

1. beg! (Reachy;z)! ReachX;z)) (3.6.1), NEG-L , PERM
2. beg! 8x;y;z TRAN S(x;V;2) 1, Al-l , HS, R5-8
3. 9k CREATE(k;x)! (Reachx;x)! X (ReachX;x))) (3.6.2)
4. Ok CREATE(k;x)! (Reachx;x)! X (ReachXx;x))) (3.6.3)
5. Reach(x;x) ! X (ReachX; x)) 3,4
6. CREATE(X;y) * Reachz;x) ! (3.6.4)
(z6 x™ Reachz;y) ! X(Reach(z;y)))
7. : (CREATE(X;y) ™ Reach(z;x)) ! (3.6.5)
(z6 x™ Reachz;y) ! X(Reach(z;y)))
8. z6 x" Reachz;x) ! X (Reachz;x)) 6,7
9. 8x;y;z TRANS(x;y;z)! X(8%;y;z TRAN S(x;y;2)) 5,8
10. G(8x;y;z TRANS(x;y;2)! X(8x;y¥;z TRAN S(x;V;2))) R2-G 9
11. 8x;y;z TRAN S(x;V;2) IND-b egG 2, 10

(ACYCLIC) 8x;z:n 8y:x;w:z R(n;z;y)! w6 x

1. 8z:n 8y:z :R(n;z;y) CA USAL
2. 8z:n 8y Reachzyy)! :R(n;zy) 1
3. 8z:n 8x;y Reachx;y)! (Reachz;x)! : R(n;z;y)) 2, T- Reach
4. 8z:n 8x;y 8w w=x! (Reachx;y)! (Reachz;w)! : R(n;z;y))) 3, A22-EQ
5. 8z:n 8x;y 8w Reachx;y)! (Reachz;w)! (w=x! :R(n;zy)) 4,PERM
6. 8z:n 8x;y 8w Reachx;y)! (Reachz;w)! (R(n;z;y)! w 6 x)) 5, INVE
7. 8z:n 8x;y Reachx;y)! 8w:z R(n;z;y)! w6 X 6, MO V-IF 8
8. 8z:n 8x 8y:x 8w:z R(n;z;y)! w6 x 7
9. 8x;z:n 8y:x;w:z R(n;z;y)! w6 x 8, Al-l

[TERM] FG(8x;y : R(mx;y)! X( R(n;x;y))

First note that substituting p; and q by > and p, by init;,3-C in both NRESP
and NCOM , we obtain asa consequencéhe following sertences:

init1o3-C ! XG(FG(Ox x:send put;n;v () ! FG(: x:deliv (put;V)))(3.6.7)
init103-C ! XG(FG(: x:deliv (put;v)) ! FG(: x:put(v))) (3.6.8)
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Linking thesetwo sertencesand relying on init,-C and inits-C, we obtain after
init123-C:

FG(Ox x:send put;n;v () ! 8y:n FG(Bx x:send put;y;Vv () (3.6.9)

We proceedwith the following derivation:

1. FG(8v : tyird(v)) (12.2), init3-C
2. FG(8v : ty:send tr;n;v () 1, (12.5)
3. FG(8v : tyrd(v)) (12.2), init3-C
4. FG(8v : ty:send tr;n;v () 3, (12.5)
5. FG(8v :tiisend tr;n;v (M): taisend tr;n;v () 2,4, DIST-ANDF G
6. FG(8x;v : xisend put;n;v () 5, inits-C
7. 8y:n FG(8x;v : x:send put;y;v () 6, (3.6.9)
8. 8y:n FG(8v : y:deliv (put;v)) 7,09
9. 8y:n FG(8v : y:put(v)) 8,011
10. 8y:n FG(8v : y:link(Vv)) 9, (11.13)
11. 8y:n FG(8x y:nxt 6 x _y:st=T! X(y:nxt 6 x _y:Ist=T)) (11.5), (11.6)
10,INV +

12. 8y:n FG(8x : Reachly;x)! X(: Reachly;Xx))) (11.9), (11.13)
10, (3.6.5) +

13. : R(n;x;y¥) $ : Reach(n;x) _: Reachn;y) _y:nxt 6 x _vyist=T (3.6.6)
14. FG(8x;y : R(nN;x;y) ! X( R(N;x;y)) 11, 12,13, T- Reach
BAR C-FG

[APR OG] G(8x t=x! X(t=x_R(ntx)) ! FG(8x t=x! X(t=x))

Supposethat the antecedem of the implication above is the casebut the conse-
quert of the sameformula is not. This assumptionimplies

GF (9x t= x" X(R(n;t; x)))

As aresult, sinceR with rst argumert xed on n is acyclic, the value of t can
only forever ewertually decrease. This generatesa cortradiction with STAB
and TERM , which say that the samerelation evertually stops changing and
then relatesjust a nite number of mail addresseseadable from n. [
Now that we know R de nes a well-foundedrelation relative to the initial
buer cell n, we can cortinue the veri cation of our rely-guarartee assertion
applying our relativised version of the inferencerule WELL . As it turns out,
howewer, we are obligedto dewelop a number of auxiliary resultsto support an
application of sudh arule. Sincethe processotis the most\activ e" componert of
the speci ed architecture, we examinethe properties of this actor rst. We shaw
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below that ead previously processeccommandcan never be the non-executable
one (NEX) after the processorbecomedive:

. V=NEX! A( mrregqVv)) (13.11), INVE , DUAL-AE

1
2. : m:re(NEX)

3. : m:exdNEX)

4. miexqv) ® m:prv8& NEX ! X(m:prv 6 NEX)
5. miprv6 NEX! G(m:prv 6 NEX)

6. m:pro(n;p)! F(m:prv 6 NEX)

7. FG(m:prv 6 NEX)

1, REFL-A |, A22-EQ
2, (13.8), cmd Ax
3,(13.3)

4, INV
(13.2), (13.3)

6, 5, init,-C, O7a

The fact that invalid commandsare (evertually) newer executedis impor-
tant becausethis is an invariant property of the processorwhich enablesthe
delivery and consumption of messages.This property allows us to show that
any executablecommanddispatched to the processoris evertually executed:

8. mireq(v) ! F(m:exqV)) (13.7)
9. m:prvé NEX” v 6 NEX! FE(m:reqVv)) (13.14)
10. m:deliv (recv) ! RESP 4,8,9

X(F(m:prv & NEX " v 6 NEX)! F(m:exqVv)))
11. XF (m:prv 6 NEX)
12. m:deliv (rec;v) ! F(v6 NEX! m:exdV))
13. m:prv 6 NEX " v 6 NEX! FE(m:deliv (recV))
14. 9k k:send reccm;v (! )

X(F(m:prvé& NEX" v 6 NEX)! F(v6 NEX! m:exdv)))
15. 9k k:send reply;m;v (*)v 6 NEX ! F(m:exdV)) 11, 14, MON-X , RIGID

7, COM-F G, RPL-GX
11,10, MON-X , RIGID
(13.13)

COM 412,13

Another important property exhibited by the processoris that nop mes-
sagesare always ewertually self-dispattied and consumed. As a result, the
processorkeepsrequestingcommandsfrom the bu er regularly:

16. mexdv) " mid = x* m:in = y! X(m:id = x™ miin = y) (13.4)
17 mid = x*min = y! G(mid = x™ miin = y) INV 16
18. G(m:id = m” m:in = n) 17, (13.1), init,-C
19. m:nop! F(m:nop) REFL , D8-F
20. m:prv & NEX ! FE(m:nop) (13.12)
21. m:deliv (nop)! X (F(m:prv & NEX)! F(m:nop)) RESP 4,19, 20
22. m:deliv (nop)! F(m:nop) 11, 21, MON-X

23. m:prv 6 NEX ! FE (m:deliv (nop)) (13.12)
24. m:send nop;m (! )X(F(m:prvé& NEX)! F(m:nop)) COM 4,22,23
25. m:send nop;m (! )XF (m:nop) 11, 24, MON-X

26. m:nop! XF (m:nop) 18, 25, (13.6)

27. F(m:nop) ! GF (m:nop)
28. GF (m:nop)
29. GF (m:send reqg;n; m ()

26, IDEM-G , IND-G
27, (13.2), init,-C
18, 28, (13.5)
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We wish to apply our well-foundedinduction rule using the new relation
symbol R to prove that valid commandsproducedin one of the two terminals
and dispatdhed to the bu er are eventually processed. Two other properties
are required to ensurethat the connectionsbetweenterminals and bu er and
betweenthis last componert and the processomresen the expected behaviour:

m:send reqg;n;m (! )F(n:deliv (get;m)) (3.6.10)
ti:send tr;n;v (! )F(n:deliv (put;v)) (3.6.11)

The omitted veri cation of thesepropertiesis analogousto that of (15).

Becausewe know that eat typed commandis evertually deliveredto the
buer (3.6.11),the processors always evertually producing new commandre-
quests (29), the requestsare eventually delivered to the buer (3.6.10), and
that valid commandsdispatched as a result by the bu er are evertually pro-
cessed15), we candewelop our inductive argumert taking only into accour the
bu er speci cation. We proposean inductive assertionsaying that, wheneer a
valid commandis deliveredto a bu er cell x (di,g [X]) and the samecell always
ewvertually receivesrequestsfrom the processor(ri.g[x]), provided that just the
processotris allowed to consumethe cortents of sud bu er cell or its sucessor
(Gna [X]), In the future either there is a cell in the bu er dispatdching the newly
deposited commandto the processongnq) or there is another celly related to x
for which the sameproperty obtains (ping [Y]). Applying our induction rule, we
reac a conclusionwhich, when connectedto the properties mertioned above,
correspndsto our rely-guarartee assertion. We usethe following abbreviations
to write our inductive assertion:

dng[X] df Reachn;x)” x:deliv (put;v)* v 6 NEX
ring [X] d¢f  GF (x:deliv (get m))
Cna[X] %" (8y (x:get(y) _x:inxt:get(y) " x:Ist=F) ! y=mW (Gna)
Pind [X] L ding [X] ™ Tina [X] " Ging [X]
gna  %f 9k :n kisend reply;m;v (*)v 6 NEX

In this way, our induction assertionbecomes:

8X Pind[X]! F(Gna _ 9y R(N;Y;X) "™ pina [Y]) (3.6.12)

Let us informally justify the derivability of (3.6.12). First note that, be-
causeof (11.9) and (11.10), whenewer a put messages delivered and subse-
quertly consumedby a bu er cell x, either the current cell is the last in the
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bu er andin this casea newoneis createdto storethe messageortents therein
or the messageés forwardedto the subsequenbu er elemen. In the former base
case,consideringthat what has just beenstored in the bu er is a valid com-
mand, becausex is assumedo always ewvertually receiwe get message$rom the
processor,accordingto ri,q[X], and can only processone sud get messageby
Cnd [X] and the last step in the veri cation of (3.3.1) in Section 3.3, the rst
of thesemessagesvill consumethe commandv or alternatively the subsequen
cell will have the same corntents consumedsometimein the future, sincethe
next cell evertually satis es both requiremerns. In either case,qg,g is obtained.
Otherwise, if the cell is not the last in the bu er, (11.10) guararteesthat the
next existing cell y related to x will evertually satisfy ping [y]. Assumingthat x
is reachable from n, it is not di cult to prove using the axiomsin Figure 3.4
that n, x and y arerelated by R.

The application of our well-founded relation rule to (3.6.12) yields the
following sertence:

(9% pina[X]) ! F(Gna) (3.6.13)

First of all, note that pnq[n] implies 9x ping[x]. For any v 6 NEX, (3.6.11)
implies di,g[n]. In addition, rely;,-C leadsto cjq [N] and the formula ri,q[n] is
a consequencef the proof step (29) above when connectedto (3.6.10). Fi-
nally, gnq implies postC when connectedto (11). Putting theseconsiderations
together and reintroducing our initialisation condition, we concludethe veri -
cation of C. [

As a nal obsenation in this section,it is worthwhile mertioning that the
necessi of using temporal seriencesto establishin a (pseudo)- nitary man-
ner the well-foundednessof binary relations within rst-order temporal logic
reinforcesthe point of view that complexdynamic data typessud aslists and
gueuesshould be treated as rst classobjects (Agha 1986, Milner et al. 1992).
Using our formalism, it would not be possibleto perform otherwiseany kind of
inductive reasoningover their structure in order to verify livenessproperties.

3.7 A Plethora of Mo des of Interaction

Apart from the asyndironous mode of messagetransmission assumedin the
actor model, componerts of real distributed systemsmay alsointeract through
point-to-p oint messaggassingmodeswhich require more syncirony. Charron-
Bost et al. (1996)de ne a hierarchy of increasinglymore syncironousinteraction
modes, where FIFO communication is mertioned as an examplein which the
messagesxhangedbetweenead two componerts must be receivedin the order
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‘6k:send rep;n () ‘6
k:deliv (id¢;n); K k:deliv (c); 6
k:id(n) A k:c n:deliv (acke);
A
A n:ackc
.\ A
K 6
k:deliv (c);A k:deliv (id¢;n); |n:send c;k ();
kic' A k:idc(n) n:send orige; k;n ()
A
Considering
k6 n 6 6
ack: rep
orige id¢ (a) recipient k (b) sendern

Figure 3.5: Protocol for ensuringsyndirony of recon gurable objects.

they are sert. We show in this sectionthat theseother modesof interaction can
alsobe capturedin terms of actors. In this way, we shall be ableto concludethat
the asyndirony assumptiondoesnot really restrict expressie power in designing
open recon gurable systems.

In order to illustrate in a direct way how to support other modes of in-
teraction in terms of the actor model, we would simply have to provide a set
of example speci cations describing objects that behase accordingly Instead,
we prefer to adopt a standard generictechnique in distributed systemstheory
de ning transformations which, when applied to a complexdescription like our
architecture speci cation in Section3.6, guarartee that the resulting description
ensuresthe required property. SeeLiu and Joseph(1992) for transformations
ensuringfault toleranceand Hadzilacosand Toueg(1994)for transformationsin
the mode of interaction of broadcastingprograms. To exemplify this technique,
we chooseto addresshere only the full syndirony case,sincethe de nition of
actor speci cation transformations may have to be quite elaborate| in the case
of FIFO comnunication, for example,we could chooseto ass@iate message$o
sequencenumbers. Moreover, becauseour researb is concernedonly with soft-
ware design,we stick to this level of abstraction dealing with speci cations as
basesubject of transformation, in cortrast to the programsusedin the afore-
mertioned work. We also adopt the same categorical techniques of previous
sections.
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Objectsthat interact via asyndronouspoint-to-p oint messaggassingcan
be transformed into syndironous onesby obliging ead dispatched messagdo
be acknowledgedand by forcing the originating object to stay in a wait state
until sud an adknowledgemen is received. Then, the normal behaviour can
be resumed. Howewer, becausewe considerrecon gurable systemshere, some
additional treatment is required to inform the recipiert of eady messageabout
the originating object mail address,to prevert the senderfrom automatically
deadlaking or dispatching unsolicited responsesif self-addressednessagesire
dispatched. One way of treating the rst problem while preservingthe original
speci cation is to force the recipiert of eady messageo erter into an auxil-
lary state which is abandonedonly if both messageand originator addressare
received. This behaviour is illustrated by the diagram in Figure 3.5.

We formalisethe syndrony transformation in terms of actor speci cations
and morphisms. This is done by de ning an extensionof eat given signature
with the additional symbols in Figure 3.5 and eat set of axiomswith the syn-
chronisation properties described above. The following de nition capturesthis
transformation:

De nition  3.7.1 (Sync hrony transformation)  Given a actor speci cation

1= ( 1; 1)inobjSpec’®  aspecication morphism ;! ,in maphSpeci™
obeyingthe following conditionsis saidto represeh a synchiony transformation:
The signature , is determinedby the ;-imageunder and the following con-
ditions:

1. 2= ((S)[ fboolg, ( 1)[ fTbool; Foools NOT oot boold);

rmsg () 2 ¢, sudithat type(rmsg () = h (s1);:::; (Sa)i,andsyn (¢ 2
A, sud that type(syn (o) = haddr, (s1);::: (Sn);booli ! bool

4. Foreah c2 (er ep)\ (11 Ipy) rep = ack (c)

The set , isdeterminedby ( ) andthe three families of axiomsbelow.
The rst of thesede nes the behaviour of actors playing the senderrole in the
protocol description above:

\
(S1) 8w niinit ! niwaite(m; ) = F

€2 ( e ep,
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\Y
(S2) 8w niswitch¢(k;w) * niwaito(k; ) = x I X (n:wait ¢(K; %) = NOT (X))
€2 (e

ehy
Y,

(S3) 8w : niswitch¢(k;w) ® mwaito(k; %) = x ! X (n:wait(k; %) = X)
2 (ep ep)
Y,

(S4) 8w (n:send c;k;w (_)n:acks(k; %)) " k6 n! X(n:switch.(k;w))
2 ( ey ey
Y

(S5) 8w niswitch¢(k;w)  (n:send c;k;w (_)n:acks(k; %)) " k6 n
€2 ( e ep,

\Y
(S6) 8¢ Wy )n:d(va)_ n:deliv (wy) ! nwaite(k; %) = F
c el ep;
d2 ( |i |bbl)

(S7) v 8% n:waitc(k;w) = T! FE(n:deliv (ack:;k;w)) * FE (n:ackc(K; %))

2 (e; ep)

The secondfamily of axioms speci es the behaviour of actors playing the
receiwer role, which is considerablymore complexthan the previousone:

(R1) 8% n:init ! nisyng(k;we;X) = F
€2 ( 1y 1y,

(R2) o E(S\fc n:rmsgc(ve) N nisync(k; ve; 7) = x ! X (n:isync(k; ¥; T) = NOT (X))
1 Ty

(R3) :Z E(%v-c niridc(k; ve) » nisyne(k; we; F) = x I X (n:sync(K; ¥; F) = NOT (X))
11 Iy

(R4) o E(%v-c :1r;:ridc(k;w3) Anirmsge(ve) N nisyng(K; ve; X) = y I X(nisyne(k; we; X) = y)
1 Ty

(R5) 22 E(S\fc n:c(ve) » Bk nisync(k;ve;F) = T ! X (nirmsge())
1 Ty

(R6) o E(S\fc n:c(ve) ™ nisyng(k;ve;F) = 7! X(n:send rep; k; v (M)niridq(k; w))
11 Ip

(R7) 22 E(%v-c nl:idc(k;v-c)" n:sync(k;we; F) = 71 X(nrride(K; w))
1 Ty

(R8) o E(S\fc n:idc(k;wve) » nisync(k; w;T) = T ! X(n:send rep; K; ¥ (*)n:rmsge(ve))
11 Ip

(R9) 228(\7% n:slei\nd repe; K;ve 0 niidc(k; we)*nisync(k; ve; 7) = T_n:c(we ) n:sync(K; ¥; F) =T
1 Ty

Y
(R10) 8% nirmsge(ve) nidc(k;we)rnisyne(K; ve; T)= T _nic(v)* Bk nisynce(K;v;F)=T
c2

1 Ty
Y
(R11) 8w niride(k; w)*k6 n  nidc(k; ve)*n:sync(k; ¥ve; T) = F_n:ic(we) nisync(k; ¥e; F) =T
c2 (1, |b1)
\Y
(R12) 8% niid¢(k;we) _ n:deliv (idc;k; ) ! nisynce(k;¥;F) = F
€2 (g 1y,

Y
(R13) 8% n:ic(¥) _ n:deliv (c;w)! nisynce(k;w;T) = F

€2 (1 1

Y
(R14) 8% nisyng(k;w;F) = F! FE(n:deliv (id¢;k;w)) N FE (n:idc(K; v))

€2 (g 1p,)

Finally, we alsoneedto proposea family of axiomsde ning the additional

behaviour of actors playing both rolesin the sameinteraction, i.e., those actors
self-addressinga message:
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(SR1) v n:send c;n; v (! )F(n:idc(n; w))

€2 ( (e epy N (11 Ip)

(SR2) v n:send c;n; v (! )(: n:deliv (c;w))W (n:id.(n; %))

€2 ( (eg ep ) (1 1py)

(SR3) 8% n:send c;n; v ( )nisync(n;%;F) = F ]
€2 ( (eq ep N\ (11 |b1))

Let us clarify the meaningof the rst setof axioms. S1 assertsthat the
originator is not initially in await state, i.e. blocked. S2 and S3 sa that
this state is only reaced and abandoneddue to the occurrenceof the local
computation switch.. This computation is causedand only happensdue to the
dispatch of the messagec or the adknowledgemen of its receipt, accordingto
S4 and S5. Note that self-addressednessagesire excludedfrom this causality
relationship. S6 speci es that the wait state consistsin forbidding the delivery
and processingof base speci cation messages. Finally, S7 assertsthat it is
ewertually possibleto receivw and processa messageeceipt adknowledgemen
in a wait state.

The secondset of axiomsis similar to the previousone,but addressesnore
complexsituations facedby actors performing the recipiert role. Recipieris are
not initially in await state, which is reaced if either the cortents of a message
or the senderaddressare processedoy local computations, which happen only
becauseof the processingof the respective messagesThis is what R1-8 deter-
mine. R9-11 de ne the precedenceonditions which hold about the occurrence
of local computations and the dispatch of replies. Note that we leave untreated
local computationsdealingwith the identi cation of self-addressednessagebe-
causein this casethe recipiert would alsobe playing the originator role and this
is to be treated by the subsequen set of axioms. R12 says that await states
are not strict, preventing only the delivery and consumptionof dispatched mes-
sageidertities with cortents idertical to previously consumedbut not iderti ed
ones. R13 statesthe sameregarding the delivery and consumption of message
cortents. R14 is the usual enablednessxiom concerningid.

To complete the speci cation of the syndirony protocol, we proposethe
third set of axioms above. SR1 sas that the dispatch of self-addressednes-
sagesimplies that they are eventually self-ideri ed using the respective local
computation. Additionally, SR2 preverts the delivery of self-addressednes-
sagedrom happening before self-ideri cation. As a result of theseaxioms, we
have that whatewer causesthe dispatch of a self-addressednessagelso causes
a self-iderti cation. The remaining axiom, SR3, requiresthat self-addressed
messagede dispatched only if previously dispatched idertical messagesre to
be delivered and processedrst. With this special treatment of self-addressed
messagesiye prevernt the componerts complyingwith the resulting speci cations
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from deadlacking strictly asa result of the transformation?. It is alsoimportant
to merion that, due to the sametreatment, the speci cation of the transfor-
mation in the form of a morphism has to be stated at the global level. This
happensbecausehe speci ed extendedbehaviour considersthat it is necessary
for eat object to have knowledgeabout its own name. Otherwise, it would not
be possibleto expect the adknowledgemen of the receipt of eadcr message.As
usually presen in many object-basedprogramming languagesin the form of a
built-in object variable, the existenceof a self attribute symbol in our formalism
would allow us to proposea local de nition for the transformation above.

Note that, by formalising the transformation in the way above, we obtain
a method which is not fully compositional in that, if applied to eacr menber
in isolation originating a co-limit diagram, i.e., to ead given speci cation, the
connectionof the resulting objects by a co-limit of speci cation morphismswould
not automatically correspnd to the application of the same transformation
to the co-limit object of the whole original diagram. This happens because
somemessagesymbols which have to be equalisedby the transformation could
remain untreated, namely thoserelated by  in Figure 3.5. To con rm this in
practice, the reader is invited to apply the transformation to Componentl ,
Terminal and BufferCell , and to obsene that not ewery pushout of the
transformation of Connectorl alongarbitrary morphismsinto the latter two
speci cations after transformation equalisesacky andrepyyt, origyr andidpyt.
This only happensusingmorphismsthat conformwith the translation of the base
speci cation synmbols and translate the auxiliary onesaccordingly

Someother subtleties result from the application of the transformation
above. For instance, safety properties are not necessarily\preserved". The
typical exampleis the emergencef deadlacks (Charron-Bost et al. 1996). These
may appear not only due to a misleadingde nition (which we have striven to
avoid in De nition 3.7.1), but also becauseof the speci ¢ properties captured
by the original speci cation. It must also be clear that, if someobjects satisfy
the requiremerts of a transformedspeci cation, they cannot freely interact with
an environment which does not obey the samerequiremens. For example,a
messageavhich is received from an ervironment which newer bothersto idertify
the senderewertually leadsto a deadlack. In other words, the transformation
reducesopenness. This is not surprising: in methods wherein eaty message
is augmerted with protocol dependert information | see(Sturman and Agha
1995)for an example| an object that doesnot comply with the protocol may
not have su cient knowledgeto deal with extendedmessages.

“Note that thesecomponerts may deadlock anyway while adopting a synchronous mode of
interaction due to their inherent properties.
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Despitethe limitations of our method erumeratedabove, it is important to
recallthat it isindeedpossibleto represen syndironousand other lessstringert
modesof interaction in terms of the actor model. An exampleof a syndironous
systemis obtained by applying the transformation above to the speci cation
UTSA and by consideringthe resulting systemas described in Section3.6.

3.8 Actors and Dynamic Subclassing

It hasbecomecustomaryto considerthe notion of classin object-baseddesign.
Classesre collectionsof objects which obey the samede nition, beit a program
or a speci cation®. They are normally coupled not only to a method which
permits easyreuseof de nition parts, inheritance, but alsoto arelation between
properties of classelemelts, subtyping Due to the inclusion relation between
sets, a sub-classrelation is readily induced. Thesenotions are not assumedin
the de nition of the actor model, accordingto Wegner(1987); so, they can be
easily superimposedto produce a particularised model. Taking speci cations
into accourt, here we may considerthat actor comnunities are classes,the
respective speci cation morphisms determine relations of (possibly multiple)
inheritance and the induced notion of theory inclusion characterisessubtyping.
The introduction of the notions above in the actor model doesnot appear
to be interesting per se Newertheless,it can lead to an elegan treatment of
extensibility other than just by meansof object creation and recon guration.
Many authors including Wieringa et al. (1995) have studied dynamic notions of
classwhereinobjects are allowed to migrate from a classto another at run time.
This is called dynamic sub-classing In our exampleconcerningbu er cells, it
would be possiblein this way to allow cellsin the Full classto becomeEmpty .
Formally, Wieringa et al. (1995) considerthat a non-trivial dynamic partition
of a classis a collection of setsof classelemeits sud that their union is equalto
the whole class,these setsare pairwise disjoint and, in addition, there is some
behaviour in which an object goesfrom one set to another, for ead two sud
setsin the dynamic classpartition. A dynamic sulzlass in turn, is a setin a
dynamic partition of a class. By allowing an object to migrate betweendynamic
subclassesit is possibleto support extension(and restriction) of functionality.
In this context, let uslook at our previousexamplein more detail. Figure
3.6illustrates how bu er cellscanbe organisedtaking into accour the notion of
dynamic subclass. There are two ways of dynamically partitioning sud a class,
not only accordingto the empty or full character of cells but also considering

SHere we need to clarify that this is just one of the many possible de nitions of class
available in the literature



3.8. Actors and Dynamic Subclassing 137

FULL
F
val |
| ) CELL
item, cons reply L Isa |
+ 0n(voidsool) | up
: go, put, get
EMPTY ! :
T 4 ris_a
|
: cm(IStbool)
nil roTTTTTs I 0
| |
| |
F 1 T 1
ALONE LINKED
nxt
item, link

Figure 3.6: Bu er cellsand related dynamic subclasses.

that they may or may not be logically linked to other similar objects. In the
picture, we represen the classand its respective subclasseausing boxes, which
are divided in three regionsto allow the represetation of the name, attribute

and action synbols of the class. The relation of being a menber of the same
dynamic partition of a classis represeted using connecteddashedlines, which
are joined togetherto expressthe fact that a set of dynamic subclassess being
de ned. Similar diagramsare usualin object-oriented design.

We adopt someauxiliary notation in this kind of informal software diagram
to expresshow an object is identied asa menber of a dynamic subclass. To
this e ect, Wieringa et al. (1995) useboth logical classpredicatesand retracts
in more detailed speci cations. Here, becausewe prefer to use our distinct
underlying formalism, we chooseinstead dynamic subclassselectors which must
be provided as part of eat superclassspeci cation. We useon as a keyword
in eat diagram to say which attribute plays this role. Note that ead value
determining subclass menmbership is written as a diagram annotation in the
picture and this set of valuesmust be in a oneto one correspndencewith the
dynamic classedn the partition. Someactionsin the respective subclassesare
alsoneededto capture the events of subclassmigration.

In our example,void distinguishesfull from empty cells. The action cons
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Figure 3.7: Static con guration of the dynamic subclassesf Cell .

is responsiblefor the migration of objects from oneclassto the other. The pair
consistingof Ist and link plays the samerole with respectto the partition of cells
into those which are linked or alone. In this situation, we must also treat the
birth of objects in the respective subclasses.Wieringa et al. (1995) remark that
only species smallestclassegartitioning the universesud asFull \ Linked ,
shouldbe assignedo creationewerts. In our example,sut everns correspnd to
the occurrenceof either item or nil depending on whetheror not the cell is to be
full or empty. Cells are createdisolated and thus the prescription to introduce
creation everts only in speciesis ful lled. The use of birth action symbols to
represeh object creation uncovers an important issue: that objects of diverse
sub-classesay needto usethe samesymbol to requesta birth. Sinceead class
has a separatespeci cation, this can only be treated by requiring the existence
of morphismsto idertify these symbols as represeting the sameewern. For
instance,a pair of morphismscan make explicit that the action item of Linked
is the sameasin the Full class. As a result, we obtain that informal diagrams
asin Figure 3.6 resenble the structure of the categoricaldiagram with reversed
arrows that could be usedto descrike the samesituation. A co-limit diagram
describingthis classstructure can be organisedasin Figure 3.7.

The formal diagramin the aforemeriioned gure doesnot make sud sense
without a de nition of the related speci cations. Theseare preseited in Figure
3.8. We considerthat the involved morphismsare all idertities. The axiomsin
thosespeci cations correspnd to the properties of BufferCell  , which turned
out to be capturedin separatedsetsof axiomsby the approad basedon dynamic
sub-classing. Class selectors,birth and migration actions are all included in
the superclassspeci cation. Eacd sub-classspeci cation only constrains the
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Speci cation Cell
data typ es addr, bool;int (T;F : bool)
attributes  void; Ist; up : bool
actions nil;item(int) : local + extrn birth ;
go; const, link(addp : lo cal computation
put(int); get(addr) : local + extrn message;
axioms k;n:addrv:int;X;y : bool

go®Mvoid=x"Ist=y! X(up=T"void=x"Ist=y) (14.1)

consMIst=x"up=y! X(void=T"Ist=x"up=1y) (14.2)

link(n)~ void = x~up=y! X(Ist=F"void=x"up=1y) (14.3)

up=T! FE(deliv (put;v)) ™ FE (put(v)) * FE (deliv (get;n)) ~ FE (get(n)) (14.4)
End

Specication Empty = ,(Cell ) +

axioms
nil! void=T"Ist=T up=F (15.1)
nil ! X(go) (15.2)
End
Specication Full = 3(Cell ) +

attributes  val : int;
actions reply(int) : extrn message
axioms n :addrv :int

item(v) ! val=v~void=F"Ist=T" up=F (16.1)

item(v) ! X (go) (16.2)

goMval=v! X(val =v) (16.3)

get(n) ~ void = F~ val = v! X (send reply;n;v (*)cong (16.4)

send reply;n;v (_)cons get(n)~ val = v~ void = F (16.5)
End

Specication Linked = 4(Cell ) +
attributes nxt : addr,
axioms k;n:addrv:int

link(n) ! X (nxt = n) (17.2)
goM nxt = n! X(nxt = n) (17.2)
put(v) M lst=F”~ nxt = n! X(send put;n;v () (17.3)
get(n)* void= 1" Ist= FA nxt = k! X(send getk;n () (17.4)
put(v) M Ist= 1! X(9n new (item;n;v) " link(n)) (17.5)
send put;k;v ( )put(v)* nxt = k™ Ist=F (17.6)
send getk;n ( )get(n)® nxt = k~void=T"Ist=F (7.7)
9n new (item;n;v) _link(n) put(v)~lst=T (17.8)
End

Figure 3.8: Speci cation of the distinct dynamic subclassef Cell
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properties of the synmbols that appear inside the respective boxesin Figure 3.6.

We are obliged to choosethis structure for speci cations of the classhierardy

by the logical properties of our underlying model. It is important to emphasise
that becauseof the locality property, an object in a speci ¢ dynamic classmay

only changethe object attributes speci ed in the respective classdescription.

Since dynamic subclassesmust not be de ned at run time but at the time of

systemdescription, we seethat the advantage dynamic sub-classingappearsto

o er is the modularisation of componert descriptions. Sincethe actor model

can already deal with the notions of state and change, we can simply capture

this other dynamic notion by adopting a speci ¢ designdiscipline.

3.9 Summary and Related Work

In this chapter, we have particularised the logical systempreviously proposedin
orderto support the designof openrecon gurable systemsin a morefaithful way.
We choseto provide built-in support for the actor model, which capturesboth
opennessand recon gurability. The structure of ead signature was specialised
to cater for the ner distinctions between the families of symbols presei in
ead actor speci cation. A set of logical axioms was proposedto capture sud
distinctions in meaningand to poseadditional constrairts in the speci ed object
behaviour. We also de ned a syrtactic way of composing actor speci cations
through the samecategoricalconstructions studied in the previous chapter. A
rely-guarartee discipline supporting the veri cation of dynamic properties was
established.An examplewas usedto illustrate local and global reasoning.

The use of additional logical symbols to represeh complex object be-
haviour is not new. Ehrich et al. (1988) introduced the idea of adding a new
argumert in ead signature symbol to represen object idertity. Wieringa et al.
(1995)usedadditional exible synbolsto represen classesand object existence.
As an alternative to both techniques,we could have adopted sort symbols with
a exible meaning, at the expenseof using a substartially more complex un-
derlying temporal logical system. In any case,the introduction of sud logical
symbols and the use of a set of abbreviations appearsto be the best choice
when we considerthat unique iderti cation of objects and messagefasto be
supported without loosingour intuitions about the actor model.

In the literature on actors, we can nd plenty of exampleson rigorous
approadesto the model. Talcott (1996a)provides an operational semarics for
actorsde ned in terms of the application of rewriting logic rules. The inference
rules of linear logic play the samerole in the work of Darlington and Guo (1995).
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The detailed operational semattics in (Agha et al. 1997)is de ned in terms of a
transition relation on actor con gurations. All theseworks appear to deal with
the semarics of actor programsonly. The early studies of Hewitt and Baker
(1977) and of Clinger (1981) were ertirely semairtic. So, our work seemsto be
the rst to dealwith the formal designof open recon gurable systemsbasedon
this model. The meansto support actor speci cation and veri cation appearto
be the main cortribution of this chapter.

Opennessand recon gurability have beenaddressedn the recen litera-
ture, receiving special attention from those who advocate an object-basedap-
proach to software design. Fiadeiro and Maibaum (1992) and also Sernadas
et al. (1995)capture opennessn a static object con guration setting considering
that ead speci ed evert may occur in parallel to other events of the ernviron-
mert. This sematics for action synbols was adopted here as well. America
and de Boer (1996) dewelop an extensiwe study of dynamically recon gurable
syndironousobject comnunities and provide methods for reasoningabout their
properties. To support the proof of global properties, in particular, a cooper-
ation test written at the global level hasto be proved. Here, on the cortrary,
becauseinteraction is always asyndironous, the decisionasto when to accept
a messages purely local. Abadi and Leino (1997) propose a Hoare logic of
object-oriented programs. Note that Hoare logics are usually endaved with a
setof inferencerules supporting the veri cation of generalconclusionsfrom par-
ticular assertionalpremises,which are solely basedon the state of the system
in a single (pair of) instant(s). Here, we have adopted a distinct strategy with
our derived inferencerules, which prioritises insteadthe separationof properties
pertaining to the distinct objects involved in ead interaction. This appears
to facilitate the dewelopmen of proofs taking only into accoun their possibly
separatedspeci cations, thus reducing the proof seart space.

A number of methods supporting a rely-guarartee discipline has already
appearedin the literature with the aim of supporting the designof opensystems.
Pandya and Joseph(1991) dewlop in the realm of syndironous processcalculi
a theory which appearsto be the closestto our work. Other related work can
be roughly divided in processor model basedformalisms(Jones1983,Cau and
Collete 1996)and logical ones(Pnueli 1985b,Collete 1994,Abadi and Lamport
1995, Jonssonand Tsay 1995). Unfortunately, in the latter recert work, many
distinct lewvels of abstraction are discussedwithout a clear boundary, due to
the in uential view that implication coincideswith re nement, asadvocated by
Abadi and Lamport (1995). In this latter category only two kinds of assertions
represeting assumptionsand commitmerts are considered. All these works
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allow the useof arbitrary safety propertiesbut just a few considerthe occurrence
of livenessproperties as a normal part of commitment assertions.In our work,

both families of properties are treated uniformly as any part of rely-guarartee
assertions. In particular, the use of the connectives unlessand until to relate
past and future relieve us from adopting the more demandingsemartic closures
and history variablesin the application of composition rules. On the other hand,

we have not studied in detail yet how to treat hidden exible variables.

In order to provide evidencethat there is no loss of expressienessby
adopting the asyndironous actor model in the design of open recon gurable
systems,we exempli ed how object descriptionscan be transformed into con-
strained speci cations which forcethe behaviour of ead systemto comply with
a syndironous mode of interaction. Agha et al. (1994) also discussa number
of higher-lewel abstractions de ned in terms of the actor model, including the
treatment of lessasyndironous interaction modes. In particular, syndironisa-
tion constrairts are treated, which permit the receipt of a messageo be delayed
until the object is in a state whereit is possibleto proceedwith the processing
of the message. Note that this is specied herein a way similar to (13.11),
by relating the possibledelivery or consumption of a messageaising our modal
possibility connectiwe to the local state of the object and the messagecortents.
There is a clearadvantage in usingsud constrairts in relation to a syndironous
mode of interaction, namely that they do not block the sender. The sameap-
plies to the call/return abstraction descrited in that work. Note that there is
a fundamerntal distinction betweenthese abstractions and the use of our syn-
chrony transformation: they are to be usedby designersand programmersas
part of actor behaviour descriptionswhereagsransformationsof the kind studied
here considerthat sud descriptionshave already beenproduced. Further work
related to sud transformationsis proposedin Chapter 6.

We also made a digressionconcerningthe use of dynamic subclassesas
an object-oriented approadt to support extensibility. We showved that, because
the actor model can capture state and change,dynamic subclassescan also be
designedin terms of this model by a speci ¢ designdiscipline which leadsto
more modular speci cations. Becausechangeis normally causally connectedto
the occurrenceof interaction here,which in turn usually evertually happen due
to the format of the axioms necessaryin ead actor speci cation, we obtain a
designnotion which compliesnot only with the de nition of dynamic subclass
but alsowith our de nition of extensibility in Chapter 1. Our work di ers in a
few points from that described by Wieringa et al. (1995). First of all, interaction
is not discussedtherein. Also, becauseour underlying model supports unique
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object iderti cation, this doesnot needto be treated in the study of dynamic
subclasses Finally, we do not requirethat classmigration beirre exiv e: herean
object may migrate to the sameclassit currerntly belongsto. In this way, class
migration coincideswith the intended meaningof the actor primitiv e become.
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Chapter 4

Re ection and the Design of
Meta-Lev el Arc hitectures

The open recon gurable system abstraction is useful to support the design of
software systemsn the smal. Recettly, howeer, the trend hasbeento pay more
and more attention to the overall organisation of the componerts of ead sys-
tem and their interrelationships, classifyingthe distinct ways in which they are
designed,organisedand ewlve over time with the aim of providing automated
dewelopmen tools and supporting reuse. The branch of Software Engineering
concernedwith theseissuesis called software architecture (Garlan 1995).

Convertional architectural styles have beenidenti ed in existing systems
and have guided new designs.Examplesare the client-server and pipe-and- Iter
styles. The most non-corvertional style is perhapsthat of meta-leel architec-
tures. A meta-levelarchitecture is one wherein there is a clear separation of
componerts into base-levelobjects, which are dewted to solving a problem in
the application domain, and meta-levelobjects, which dealwith the base-leel of
the architecture itself | its con guration, operational behaviour and the way it
is usedto accomplishthe main purposeof the system. This separationmay be
iterated to identify many (possibly unrelated) meta-lewelsin the samearchitec-
ture. Meta-level objects are usefulin applications sud asmemory managemet)
debugging,fault detection and recovery. Particularly in the cortext of concur-
rent and distributed systems,this separationis important in sud activities as
stheduling, load balancing and task migration. In this way, meta-le\el objects
do not directly dealwith the problem domain, but help in establishinga better
organisationof the system,as obsened by Simhi et al. (1996).

When the meta relation is recursiwely iterated, architectures complying
with a distinguished style are obtained. Re ective architectures realisecompu-
tational re ection. Maes (1987) characterisescomputational re ection as the
activity performedby eadh componert when doing computation about its self,

145
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possibly a ecting its own behaviour. In a re ectiv e system,the meta-lewels are
represeted by an interpreter and there is a causal connection between system
description and its behaviour: wheneer the description changes,the behaviour
changesasa result and ead modi cation in behaviour is precededby a descrip-
tion change. Programmingand speci cation languagesare saidto bere ective if
re ection is explicitly supported by speci ¢ languageconstructs. In the former
case,sud languagesare said to have an underlying re ectiv e architecture.

Many authors have studied the designof meta-level and re ectiv e archi-
tectures. Simhi et al. (1996) proposea technique basedon state transition dia-
gramsto enhancethe designof re ectiv e objects. Taharaet al. (1996)introduce
an algebraicsemairtics for re ectiv e objects basedon an extensionof rewriting
logic (Meseguerl992). Saekiet al. (1993) proposea re ectiv e extensionof the
speci cation languageLOTOS. Clavel and Meseguer(1996) study re ection in
a generallogical setting and shawv that the executablespeci cation language
Maude, which is basedon rewriting logic, ful Is the conditionsto be re ective.

It isimportant to stressthat the researb mertioned above is mostly con-
cernedwith the designof meta-lewel and re ectiv e architectures. In logic, meta-
theoretic facilities have also beenstudied without any required connectionwith
a notion of computation. Sud theoretic study involves axiomatising a given
provability relation and this allows oneto usethe logical languageto talk about
the logical systemitself. This is why sud facilities are said to be intr ospective.
Attardi and Simi (1991), Basinand Matthews (1996) pursuethis line of researé.

The confusionbetweenthe presenceof meta-lewel or re ectiv e facilities at
the architectural level and in the logical systemusedfor designis just oneof the
many points that has remainedrather unclear concerningthese notions. Most
authors do not distinguish meta-lewel from re ectiv e architectures as Venkata-
subramanianand Talcott (1993)do. Moreover, it is not clearin many situations
if theseare required or even desirablenotions. On the other hand, both notions
are clearly helpful in ensuring extensibility due to the possibility of providing
extendedbase-leel functionality asa result of meta-level behaviour.

In this chapter, we rst shaw that the assumptionof meta-lewel architec-
tures is reasonablan the designof open recon gurable systemsas formalisedin
the previous chapter. We baseour rationale on the impossibility of solving the
consensugproblem in asyndironous systemsthat admit crash failures (Fischer
et al. 1985). Next, we de ne a discipline that permits the designof meta-lewel
architectures. Finally, we arguethat the assumptionof re ectiv e architectures
is not compatiblewith systematicsoftware dewvelopmen dueto the impossibility
of relying on constartly changing speci cations for veri cation and re nemernt.
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4.1 Meta-lev el Considered Necessary: The Con-
sensus Problem

In this section,we show that the assumptionof meta-lewel architectures is rea-
sonablein the designof openrecon gurable systemsasformalisedin the previous
chapter. To read this conclusion,we usethe consensugroblem which involves
a set of processeswhich may individually fail but have to agreeon the same
binary value otherwise. This is just an abstraction of many practical problems
sud asdistributed transaction commitmert. Fischer et al. (1985) shaw that it
isimpossibleto nd animplemertation that solvesthis problemin a completely
asyndironous setting admitting at least one unreliable process.

Many distinct types of failure are studied in the design of fault-tolerant
systems. Messagdossis the most typical examplein a messaggyassingmode
of interaction. The consensugproblem is impossiblein the presenceof crash-
failures (also known asfail-stop failures or more seere onessud as Byzantine
failures which may be followed by an arbitrary object behaviour, even in an
ideal reliable network that guarartees messagedelivery. This last property is
ensuredby our axiomatisation of the actor model. On the other hand, due to
our decisionto make wealer assumptionsthan thoseof perfectmessagdu ering
in our axiomatisation, hereit is possibleto represeh crash-failuresas required
in any attempt to deal with agreemenh problems.

The many processesf a systeminvolved in reading distributed agree-
mernt are assumedto hold an initial boolean value and to interact solely by
asyndironous messagepassing. For any sud an agreemeh systemto be cor-
rect, the following properties are required to hold:

Termination: Every non-faulty processeertually decidessomevalue;
Agreemen t. Ead pair of non-faulty processeslecidesthe samevalue;
Integrit y: Every processdecidesat most once;

Validit y: If a processdecidesa value, it wasthe initial value of someprocess.

Note that integrity is local whereasthe other onesare global properties of the
system. Wealer formulations of the consensugproblem alsoyield an impossibil-
ity result, but for our illustrativ e purposesthe formulation above su ces.

Due to the generalnature of the problem, it appearsto be more prof-
itable to attempt a generaltreatment here. In order to represeh agreemen
processesye use presetation sdhemas,which dier from theory presenations
just becausethe signature symbols are left partially unspeci ed and the stated
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Specication UnrelPr oc
data types [ faddrbool (T;F : bool)g
attributes A [ ffailed: boolg
actions |, :local birth ;
e, - €Xtrn birth
¢ [ ffailg:local computation ;
| 1, - local message;
e g . €XIrn message
axioms X : bool;n : addr

fail ! failed=F (18.1)
fajl 1 X (failed= T) (18.2)
9% c(¥) " failed= x! X(failed= x) (18.3)
Scan;vb new (b;n;w) ! failed=F (18.4)
v 5?\71) b(w) ! failed=F (18.5)
v lS;vbC () ! failed=F (18.6)
¥ E«NC deliv (c;%) _c(w)! failed=F (18.7)
;'«)rll?vc send c;n; v (! )failled=F (18.8)
End "

Figure 4.1: Sthematic speci cation of unreliable processes.

sertencesmay be schemasand not just axioms as usual. Whenewer we refer
to one sud schematic preseration, we are in fact making referenceto all the
theory presemations which have a signature and a set of axioms complying with

the speci ed syntactic pattern. In addition, ea¢r morphism connectinga source
to atarget sthematic presemation is assumedo represen a family of morphisms
relating the respective theory presemations which also respect the translation

of the sourceaxiom sdhemas.

Our sthematic presetation of unreliable processesppearsin Figure 4.1.
Eadh processis endaved with distinguishedlocal computation and boolean at-
tribute synbols, fail and f ail ed respectively, which represen the occurrenceof
a failure and the unreliable state readed as a result of this occurrence. Axiom
(18.1) says that failures can occur only in reliable states. Moreover, an unreli-
able state is readhed as a result of sud an occurrenceand only then, according
to (18.2) and (18.3). Sthema(18.4) speci es that only initially reliable processes
are admissible. The other axiom schemasin the presenation determinethat it
is impossiblefor the processto withessthe occurrenceof local everts after the
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Specication UnrelA gmProc = (UnrelPr oc) +
attributes initial ; decision; decided: bool; known : addr” (n 2 N)
actions decidgbool) : local computation

axioms x;y : bool;K : addr”

9x decidgx) ! decided= F (19.1)
c{t;cide(x) I X (decision = x * decided= T) (19.2)
9% c(¥) " decision = x * decided= y! X (decision = x " decided= y) (19.3)
9% c(¥) M initial = x ™ known = KR! X(initial = x” known = K) (19.4)
9KR;w, b(K;w,) ! decided= F* initial = decision”™ known = K (19.5)
b2 |
End i

Figure 4.2: Sthematic speci cation of unreliable agreemenh processes.

occurrenceof a failure. This meansthat we are dealingwith crashfailures.

The processeshat attempt to read distributed agreemet in any system
are consideredo beunreliablein the precisesensespeci ed above. We represen
this fact through a morphism connectingthe schematic speci cation of unreli-
able processednrelPr oc to that of agreemeh processednrelA gmPr oc.
Apart from the symbols dealingwith the occurrenceof failures, the languageof
agreemen processess alsorequiredto cortain symbols to treat the occurrence
of a decision, decide the value initially proposedby the process,initial , and
the possibly agreedbooleanvalue, decision. As in the caseof failures, we also
adopt a boolean attribute decidedto denote whether or not a decisionaction
has already happened. Furthermore, a list of processesvhich is known to be
attempting to read agreemen is kept asthe value of the attribute known. The
(schematic) axiomsin Figure 4.2 are similar to those specifying the occurrence
of failures. We needto stressat this point that many other presemations would
also be suitable to deal with the consensugproblem | what is important in
this situation is the set of properties enjoyed by the speci ed objects| but we
prefer the presemation above to facilitate our exposition.

Now we can formalise the dynamic nature of the problem. Upon proper
initialisation, the four propertieslisted above are requiredto hold. The safepart
of theseproperties may be formally stated as follows:

[ nit (K; R): W8i on; v, n:new(b;ki;K;w) " (Initialisation)
|
v >b(G(8I 9i; % I:send c;ki; v (! )9) | = ny);

C2 ¢ ¢,
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Term(K): 8i k;:failled= F! kj:decided= T, (Termination)
Agm(R): 9v 8i k;:falled= F! kj:decision=v; (Agreemert)
I nteg(K): 8i 9v ki:deciddv)! XG(Bv k;:decid€v)); (Integrity)
Val(R): 8i;v kj:decision=v! 9j Kk;:initial = v. (Validity)

Usingthe formulasabove and the logical propertiesof actors, the consensus
problem can be formulated asthe validity of the following livenessproperty, for
ead K sudh that lenkK 2 and eat 1 :

Init(R;R)! F(Term(R) » Agm(K) " I nteg(kK) * Val(K)) (4.1.1)

Note that this sertence may be obtained as a result of reasoningaccording to
the rely-guarartee discipline descriked in the previous chapter.

The solution of the problem above clearly dependson the particular set
of properties speci ed as part of eat presetation. Fischer et al. (1985) gives
a semaric proof that there is no solution if the mode of interaction is purely
asyndironous. Howeer, we cannot guarartee that this is the caseusingonly the
previous sthematic presemations, sinceeven completely syndironous comnuni-
cation can be speci ed in terms of asyndironous messageassing,asillustrated
in the precedingchapter. On the other hand, a totally syndironous solution
basedon our schematic presemations obtained via an application of our syn-
chrony transformation is alsoimpossibleas a target processfailure would imply
in a sourceprocessdeadlak in any commnunication. Many partial syndirony
solutions, which depend on ne grain decisionsconcerningthe adopted mode
of interaction, are studied by Dolev et al. (1987). Despite these deterministic
solutions, if all the processesn the systemmay fail and there is no syndirony
involved, the problem is impossible. In these circumstances,a solution based
solely on the actor model cannot be proposed.

One elegan way of hiding the ne grain decisionsconcerningthe mode of
interaction betweenagreemen processess the assumptionof failure detectorsas
proposedby Chandraand Toueg(1996). Each processs assumedo have access
to a local failure detection object. Sud objects keepa list of processeshat are
suspectedto have failed, which is dynamically updated by inclusion or removal.
Failure detectorscan make mistakesbut are requiredto obey somecompleteness
and accuracy properties demanding,for instance,that evertually every process
that crashess always suspectedby somereliable processand that somereliable
processis evertually never suspectedby any of the processeshat do not crash.
A number of failure detectorscan be proposedobeying theseproperties.
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Note that failure detection objects are not assumedo crash. This distinc-
tion betweenobjects that may and may not crash,togetherwith the assumption
that failures are to be detectedamongstthe set of given processesestablishes
a separationof the involved system componerns into base-leel and meta-le\el
objects. Note that failure detectorsare about the systemitself. In this way, they
are not to have any connectionwith the problem domain, naturally belongingto
a meta-lewel of the system. Becausesomeabstraction similar to failure detectors
is required in order to hide the underlying mode of interaction and this can be
captured in terms of meta-lewel architectures, it seemsthat it is reasonableto
considerthe latter notion as necessaryin the designof extensible systems. In
the next section,we proposea novel way of designingmeta-le\el architectures.

4.2 The Design of Meta-Lev el Arc hitectures

The certral point in designing meta-lewel architectures is to draw an explicit
boundary between base-leel and meta-leel functionality. This separation of
what concernsthe problem domain and the systemitself is normally accom-
plished stating a set of non-interference properties. Saeki et al. (1993), for
instance,requiresthat baseand meta-lewel objects do not comrmnunicate explic-
itly. Venkatasubramanianand Talcott (1993) require that meta-le\el objects
communicate with ead other via messageassingbut manipulate baseobjects
asdata structures. This kind of organisationis illustrated in Figure 4.3.

Ead object in the base-leel is ass@iatedto somemeta-leel object wherein
base-leel state and ewerts are represeted. This givesthe meta-lewel accesdo
the featuresof the base-leel, which in our caseincludesthe hidden part of the
state related to messagebu ering. The hidden state of the respective objects
is represeted as the dark parts of Figure 4.3. Meta and baselevel are also
requiredto be aware of the mail addressef ead other and this enablestheir
interaction.

We formalisethe previousintuition about the represetation of base-leel
information in the meta-lewel through the following de nition:

De nition 4.2.1 (Base-lev el representation) Given actor speci cations
=( i )i 1 2, ,issaidto representa meta-levelof ; if thereis a
speci cation morphism ;! , sud that:

1. maps attribute and actions of ; into ,, i.e., ass@iatesto pairs of
distinct symbolsin eat of thesefamiliesof ; pairsofdistinct , symbols;

2. there are exible termsmeta 2 Term( 1)aqqr and base 2 Term(  3)adar
sud that (meta ) 6 base;
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base-leel

meta-lewel

Figure 4.3: Relationship betweenbaseand meta-leel objects.

3. 20 (pi 1 pforeatip2 ;[ Ax ,.
Given the morphism , we say that representsthe base-leel in . 0]

The requiremen that represetation morphismsbe injective on attribute and
action symbols in (1) capturesthe intuition that the architecture meta-lewel
keepsa full represemation of all the behavioural characteristicsof the base-leel.
In orderto allow unlimited accesgo base-leel information in the meta-le\el, as
previously descriked, we also have to lift the restriction that somesymbols in
the base-leel represetation are hidden. Condition (2) is to guarartee that base
and meta-le\el objects can be made aware of the mail addressof eat other and
the represetation processdoesnot precludetheseobjects from being distinct,
having di erent mail addresses.The last condition (3) says that the properties
of ead object are the samewhen obsened from either level of the architecture.

Base-leel represetation just ensureghat it is possiblefor baseand meta
levelsto co-existin the samesystem. To guarartee that this certainly happens,
we also needto make someassumptionson the way objects ful lling ead of
theserolesare related:
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De nition 4.2.2 (Meta-relation)  Given actors denoted by fXx; yg Vaddr
and specications ; = ( i, i), 1 i 2, sud that , represets the
meta-level of ;, y in the ,-comnunity is said to be a meta-level object of
the base-levebbject x in the ;-comnunity if for some represeting ;in 3:

1.x6Yy;
v %

2. 8k;wy xf(w)=k$ y: (f)(w)=kand 8w xic(w)$ y: (O)(w);
f2AA c2 Ipl in b

3. X: (meta ):base = x and y:base: (meta ) = v. ]

The rst condition preverts that the samebase-leel object berelatedto itself as
part of the meta-lewel. The secondonesays that meta-le\el objects simulate the
behaviour of their base-leel courterparts. This is quite a strong requiremer.
For instance,it impliesthat idertical messageare always dispatchedto baseand
meta-lewel objects. There are ways of making this requiremert more reasonable
by increasingthe amourt of sharing allowed by the formalism | it may be
possibleto considerthat the same messagewith the sameiderti cation, is
dispatched to both baseand metalevel | but we preferto leave this treatment
unspeci ed in orderto dealwith the problemin an abstract manner. Dueto our
mutual exclusionassumptions,the previousrequiremen alsoimplies that meta-
level objectswill presen someindependert behaviour only whentheir respective
base-leel is inactive. Finally, the third condition says that baseand meta-le\el
objects know the mail addresse®f ead other. From the de nitions above, we
seethat, to designmeta-lewel architectures, we have to split the designin two
parts asusual: a pair of speci cations related by meta-represetation is proposed
and two existing objects are assumedo be always meta-related.

Note that, given a represetation morphism, the assumptionthat two ob-
jects are meta-relatedcan be stated usinga nite conjunction of formulas. That
the two objects exist and belongto distinct comnunities is simply ensuredby
relating the occurrenceof their birth actions. The conditions (1-3) above are
all stated in terms of single formulas. Therefore, it is feasibleto write sud a
nitary conjunction as part of a rely-guarartee assertion.

Also note that our de nitions are quite permissive concerning multiple
connectionsbetweenbaseand meta levels. For instance, it is possiblethat the
samebase-leel object be directly related to se\eral distinct meta-lewel objects.
What is necessaryto determine this situation, apart from the respective as-
sumptions, is a set of represetation morphisms,ead requiring the existenceof
a distinct meta attribute. On the other hand, it is possiblefor the samemeta-
level object to represenh seeral base-leel objects. This happens becausethe
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attribute symbol baseis not required to be in the image of any represemation
morphism. In this way, the samemeta-leel speci cation can determine many
sud attributes which arerelated to the respective baselevelsthrough their rep-
resettiation morphisms and the correspnding assumptions. Furthermore, by
chaining thesestatic and dynamic relationships,a nite hierarchy of meta-lewels
can be speci ed aspart of the samesystem.

Let us return to the consensusproblem. We sketch in what follows a
solution basedon the rigorous discipline proposedabove. Our solution requires
that the meta-lewel of eat object, that is the respective failure detector, knows
the meta-lewel addressof all the other processesttempting to read agreemen
This is achieved by requiring that ead of the n agreemenh processedroadcasts
the mail addressof its meta-le\el object just after the occurrenceof the respective
birth action. Note that someof thesemessagemay never bereceived sincesome
failuresmay happen rst. Wealsorequirethat the interaction betweena process
andits local failure detector be syndironousand make the assumptionthat meta
and base-leel objects communicate only amongthemseles.

Eadh failure detector operatesin asyndironousrounds, whosestepsare de-
termined by the consumption of self addressednessagesEad failure detector
automatically knows if its processfailed or not, due to our construction giving
base-leel accesso these meta-lewel objects, and is always ewertually enabled
for delivery of any messagepertaining only to the meta-level. At the end of
ead round, the failure detector updatesits list of suspectswith the information
possibly received by other detectorsand broadcaststo all the other failure de-
tectors the list of processe&nown to have crashed.In this way, the information
provided by eat of theseobjects is always correct and accurate.

The agreemenh processegshemsel\es also operate basedon asyndironous
rounds and keeplists of valuesthat are known to be initially proposedby ead
process. In the beginning, this list cortains only the value proposedby the
local process. After n 1 rounds, wherein proposedvaluesare broadcastand
propositions from all processeshat are not suspectedare awaited, eat process
that hasnot crashedwill be aware of a list of initially proposedvalues. During
eath round, the list of suspected processess dynamically updated to re ect
information provided by the local failure detector. In a secondstage, the list
kept by ead processis broadcastand ewery received list is usedtogether with
the local list to computea leastcommondenominatorthat will replacethe latter
list. Again, the list of suspectsis updated while new lists of valuesare expected.
After this stage,there will be agreemen on the list of proposedvaluesamong
the processeghat have not crashed. Finally, ead reliable processdecidesthe
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rst valueof this list. The systemclearly readhesconsensusfter this procedure.

The solution above is essetially that proposedby Chandra and Toueg
(1996), particularised with our speci cation of failure detectorsderived from the
assumedmeta-lewel architecture. Therein, a proof can be found that property
(4.1.1) is valid consideringtheseassumptions.

4.3 Computational Re ection

The assumption of meta-lewel architectures is extremely powerful. Even with-
out making referenceto the hidden symbols in the represetation of base-leel
objects, to solve the consensugproblemin the previoussectionwe could design
perfectfailure detectors,in the sensethat they are always correct, accurateand
never make mistakes. Therefore,it appearsto be natural to ask oursehesif the
assumptionof re ectiv e architectures would be even more desirable.

This questionmay be given two answers. Consideringthat we are inter-
estedin extensiblesystems,re ectiv e architectures are certainly desirablesince
they permit behavioural changesof system featuresat any architecture level.
For instance,in are ectiv e text editor like Emacs(Stallman 1981),it is possible
to extend the systemproviding not only a newway of cutting and pasting text
basedon merus, apart from keystroke commands,but alsonew ways of making
this extension,through forms or changinga con guration le, to mertion a few
possibilities, and this chain of extensionscould be in nitely iterated.

On the other hand, if we considerour interest in systematic software de-
velopmen, it doesnot make senseto assumere ectiv e architectures. It would
be impossibleto prove any non-trivial safely property concerningthe previously
mertioned re ectiv e text editor, for instancethat the editing sessions not ter-
minated unlessthe text is saved rst, becausethis and other properties would
depend on the extensionsperformedat run time. Sud extensionswould have
to be re ected in the speci cation of the systemitself. It would also be im-
possibleto de ne a non-trivial satisfaction relation betweensud speci cations
and programs becausethe programming languagewould have to be re ective
as well. Therefore,the assumptionof re ection is inappropriate in systematic
software dewelopmen. This has already beeniderti ed by Agha et al. (1993),
for instance. We needto clarify, howewer, that designinga re ectiv e architecture
is di erent from assumingthe existenceof one sut an architecture in the de-
sign of a distinct system: the designof a re ectiv e architecture doesnot needto
assumethe existenceof one sud an architecture. In the realm of programming
languagedesign,this has already beenshavn by Wand and Friedman (1988).
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Part of the argumen above can also be explainedin terms of our formal
de nitions in the previoussection. Re ective architectures are those wherethe
chain of meta-lewelsis not nite. In this way, to give formal treatment to the
assumptionof sud an architecture, we would have to provide anin nite number
of morphismsconnectingead pair of architecture levels and write an in nitary
conjunction of assumptionsof meta-related objects. This is clearly impossible
usingthe nitary rst-order logical systemsstudied in this thesis, but may not
represen a problemif anin nitary logic basedon L, ,,, s&, is adopted.

4.4 Summary and Related Work

In this chapter, we have arguedthat the assumptionof meta-leel architectures
should be considerednecessaryn the designof extensiblesystems. Through an
example, we shaved that meta-lewel architectures provide a direct and elegan
solution to a speci ¢ problemwhich otherwisedemands ne grain decisionscon-
cerningthe mode of interaction betweenobjects and is in somecasesmpossible.
We proposeda designdiscipline that treats this assumption. We also argued
that the assumptionof re ectiv e architecturesis not compatible with the notion
of systematic software developmer.

Maes(1987)wasthe rst to proposea systematicstudy of computational
re ection andto dewelop a re ectiv e object-basedprogramminglanguage.Agha
(1997)recognisedhe needof more expressie formalismsto dealwith meta-le\el
architectures. Venkatasubramanianand Talcott (1993) establisheda clear dis-
tinction betweenmeta-lewel and re ectiv e architectures, which we have followed,
and deweloped semarnic methods for reasoningabout sud architectures. The
latter work is basedon the actor model, asis our case.

Saekiet al. (1993) extendedthe speci cation languageLOTOS with re ec-
tive facilities. In particular, the restriction that base-leel represetation must
focusjust on behavioural aspects of the systemwas re ected herein De nition
4.2.1through the requiremen that attribute and action synbols be fully rep-
resered. Simhi et al. (1996) proposedthe use of state transition diagramsto
enhancethe designof re ectiv e objects. Both works cortrast with our view that
re ection is not compatible with systematic software dewelopmen and software
designin particular.

It is alsointeresting to mertion that all the work on distributed consensus
has beendewloped in a sematiic way (Fischer et al. 1985, Dolev et al. 1987,
Chandra and Toueg 1996). Our formalism and discipline appear to provide a
suitable proof-theoretic framework for dealingwith this and related problems.



Chapter 5

Case Study: Location
Managemen t for Mobilit y

We are currently facing a radical changein the way usersinteract with software
systemsand in the underlying distributed software architectures. Thanks to
the advert of technologieslike cellular phones, personaldigital assistans and
active badges,usersare no longer required to go to speci ¢ accesspoints to
take advantage of somelocally provided functionality. Sud deviceshave be-
comeincreasingly more personaland can be carried by their owners. In turn,
the respective software systemsmay now be usedat any time and place, and
can provide location dependen functionality sud as ubiquitous messageleliv-
ery, transportable usersessionsand others (Harter and Hopper 1994). Software
componerts which implemert thesefeaturesare identied by end usersas ex-
tending the functionality provided at their current location. What is essetially
novel in this completely new kind of operational environment is the very pres-
enceof mobility. The way to support the new requiremerns related to mobility
is to managelocation information.

The needto managelocation information and mobility brings with it new
problemsto be addressedn the designof distributed systems. The autonomy
and heterogeneiy presemed by mobile objects make it not only dicult but
virtually impossibleto accournt for many interesting features required in real
implementations as part of any design. Moreover, to ensurethat these sys-
tems are open, characteristics that depend on the current technology needto
be abstracted away. In this context, speci cations have to be supported by a
formalism which is expressiely rich enoughto represen the remaining prop-
erties. VDM (Jones1990) and Z (Spivey 1989), for instance, do not address
at all the inherert concurrencyof mobile systems. In someother cases,con-
currency is actually treated but the dewelopmen processis organisedin terms
of notions like processegMilner 1983) or programs (Chandy and Misra 1988,
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Wilcox and Roman 1996),which certainly provide important insights on how an
implemertation shouldwork but poorly support understandingand represeting
the problem domain in an organisedmanner. The use of object-basednotions
like attributes, actions and encapsulationas studied in the previous chapters
seemsto bridge this gap, but even then expressibility concernsarise sincethe
basic notion of mobility hasto be captured.

We have chosenas a casestudy in this chapter the designof a particular
location managemen architecture for networks of mobile usersand devices,as
originally sketched in (Duarte 1997a),to illustrate in a more realistic situation
the application of our formalism and designdiscipline. For simplicity, we ignore
the important issuesof dependability, authenticity and security (Spreitzer and
Theimer 1994), conceltrating just in the managemehn of location information.
We alsoabstract away many details that are essetial to ensurereasonableper-
formance (Lam et al. 1996). In the next section, we informally describe the
requiremens of location managemenh applications. We then dewte two sec-
tions to their design,namely their speci cation and veri cation. We conclude
this chapter providing a comparisonwith related work.

5.1 Location Managemen t. Requiremen ts

A certral problemin designingand implemerting software systemsfor networks
of mobile usersand devicesis how to managedistributed object locations. An
extensiwe description of the problem can be found in the literature (cf. Harter
and Hopper 1994, Leonhardt and Magee 1996, Spreitzer and Theimer 1994).
In this section,we provide an informal list of requiremernts strictly imposedby
mobility. In the next section,we discusssomedesigndecisionsbasedon this list
and proposea formal speci cation for the correspnding mobile architecture.

We can classifythe requiremernts for managingdistributed object locations
into three families, the rst concerningthe nature of location information and
located objects, the secondabout the processof acquiring location information
and the third on how to deal with it. In what follows, we provide a partial list
of functional requiremerns:

1. Location information must be dynamic, in the sensethat, at ead time, it
may be a distinct instanceof a class of objects;

2. Location information must be mutable in the sensethat, at eadh time, it
may be an instance of a distinct classof objects;

1Here we considerthe word classin a loosesense,just asa set of objects.
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3. Located objects may be usersor devies at least;

4. Location information acquisition must be unintrusive, which meansthat
the acquisition processcannot intrude user behaviour nor require user
intervertion;

5. Location information acquisition must o er support to multiple location
observations which meansthat simultaneousobsenations producing dis-
tinct location information for the sameobject may occur;

6. Location information managemeh must support indeterminacy, which
meansthat location information for some objects may not be available
at someinstant;

7. Location information managemeh must o er support to object naming,
which is the assignmenh of meaninglesaunique namesto located objects.

The rst two items should not be confused.While mobile object locations
clearly may needto changeastime passesmeaningthat they are dynamic, it
Is not so obvious that they should also be mutable. This is becausea location
servicemay provide information with distinct accuracier multiple servicesmay
beused,asobsenedby Leonhardtand Magee(1996). The requiremen of unique
object naming may be cortroversial, but appearsto be the minimal condition
to support properties not treated here sud as autherticity and security.

5.2 Location Management in a Formal Setting

Beforeintroducingde nitions directly relatedto location managemen we presen
in Figure 5.1 the speci cation of region tree nodes, particular instancesof the

spatial hierarchical data structures proposedby Samet (1984). Thesewill be
usedin our designlater on. At the top of the specication, we can seesort
symbols denoting not only standard actor data typesbut alsothe four compass
points (direg. Constart and operation symbols appear in the samestatemer.

Eadh quadratic planar region is represeted by a terminal node (node), which

is created undivided (bot= T), or by a root node (root). Terminal nodes may

receiwe requeststo divide themselesin sub-regiong( split) organisedin regac-
cording to the directions of the compasspoints. Nodes needto be aware of
their own mail address(me) and the nameof a parert node (pr), whenit exists.
Evertually, cortinuations may be created (ct) to expect the answer of queries
of regioninclusion (in). De ned in this way, theseare quaternary treeswherein
nodesmay be dynamically assaiated to more re ned partitions of the plane.
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Actor RegionTreeNode
data typ es addr, bool;int;direc(T;F : bool;0;1;3:int;+ :int int! int;N;S;E;w : direg
attributes me;pr : addr,reg: direc! addr, up;bot: bool; an : int
actions ct(addr) : local birth ;
root(addr’); node(addr®) : local + extrn birth ;
go; inc; updt (addr®) : local computation ;
ack(addr) : extrn message;
split(addp); in(addr?); rpl (addr; bool) : local + extrn message
axioms n:addi;k;p;q;r;s;t; u;x;y;z : addr,d : diregv : int; b: bool

root(k;R) ! me= k™ up=F”"bot=F"reg=n"*an=20 (20.1)
node(k;p) _ct(k;p)! me=k~ pr=prup=F"bot=T"regdl=k*an=0 (20.2)
root(k; n) _ node(k;p) _ ct(k;p) ! X (go) (20.3)
gorreg=nA~an=v! X(reg=A~an=vAup=T) (20.4)
updt(R) *up=b*an=v! X(up=b”an=v”" bot=F”"reg=nRn) (20.5)
inc"up=b*reg=gfan=v! X(up=b"reg=¢g"an=v+ 1) (20.6)
(go_updt(n) _inc)* me=p~rpr=q! X(me=p”pr=aq (20.7)
split(k) » me = p! X (9¢ updt(e) ® new(node;q;q;p) "~ send ack;k; & () (20.8)
(ink;pprr=k_rplr;s;T)Mpr=p)*me= k! X(send rpl;p;r;k; T () (20.9)
in(k;p)"me=q6 k"bot= FAreg= r! X(9's new(ct;s;q;p)"send in;ri;k;s () (20.10)
in(k;p)* me=qg6 k™ bot=T1! X(send rpl;p;k;qF () (20.11)
rpl(k;p;F) M pr=r~"me=qgq! X(an= 3" send rpl;r;k;q;F (_)an 6 3" inc) (20.12)
9n; p new (node; n;;p;i; g _ updt(R) _send adk;r;n ( )split(r)*» me= q (20.13)
inc  9k;p rpl(k;p;F)*an6 3 (20.14)
send rpl;k;p;g; T (1 )(in(g; k)~ p=q_9s rpl(p;s;T) " pr= k)" me=q (20.15)

send rpl;K;p;q;F 0 (in(p; k)" p6 g* bot=T_9s rpl(p;s;F)" pr=k"an=3)"me=q
(20.16)
9k new (ct;k;q;r) _send in;p;;s;k ( )in(s;r)* me= g6 s” bot=F"reg=p (20.17)

up=T! FE(deliv (split;p)) » FE (deliv (in;q;r)) ~ FE (deliv (rpl;s;t; b)) (20.18)
up=T! FE(split(t)) » FE (in(u;x)) ~ FE (rpl(y; z; b)) (20.19)
End

Figure 5.1: Speci cation of regiontrees.

Basedon the requiremerns list above, we make our rst designdecision
following Harter and Hopper (1994) by using referencesto objects denoting
geographicregionsinstead of dealingwith location information directly. In this
way, ead located object acquiresa new attribute (log, which is to contain the
mail addressof an actor represeting a regionin a location space.Using region
treesasin Figure 5.1 for this purpose,we treat both the dynamic and mutable
character of location information with this decision: asthe value of an attribute,
sudh information can always be changed; as a reference,it doesnot constrain
the shape and sizeof location obsenations. We make, howeer, the simplifying
assumption that geographicregions are divided into disjoint squares,due to
the structure of sud trees. In a real global location system, it may be more
appropriate to adopt a location spacedivided accordingto a sphericalcoordinate
systemwith origin in the earth certre. Unique object namingis treated similarly,
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Actor Sensor
data typ es addr, bool;int (T;F : bool; 0; 1; MAX :int;+ :int int! int)
attributes  me;srv; obj;id; loc: addr, up : bool; time : int
actions sengaddr) :local + extrn birth ;
go; reloc(addn); set(int); obs: lo cal computation
tick : local + extrn message;
detect(addr’); unreach(addr’) : extrn message
axioms n;p;q;r :addrv :int;b: bool
sengn; p;q;r;s)! me=n”"srv=p~robj=qtid=r"loc=s”time = 0" up=F (21.1)

sengn; p;q;r;s) ! X(go” send tick;n () (21.2)
go® me=n”"loc=qg"time =v! X(me=n"loc=g"time =v Aup=T) (21.3)
reloc(n) » me= p~time = vAup=b! X(loc=n”me=p~rtime =vrup="h (21.4)
setv)* me= n”"loc= q” up=b! X(time = v~ me=n"loc=q”up=Db) (21.5)

(go_reloc(n) _set(v)) » srvy=p~robj=qg”id=r! X(srv=p~robj=qg~id=r) (21.6)

obs® me=n”"srv=probj=gtid=r! X(me=n”srv=p~robj=q~id=r) (21.7)

obs” time = v~ loc= n® up=b! X(time = v~ loc=n”"up=b) (21.8)

obs™ srvy=n”"loc=p”~ (obj=q_id =qg)! X(sef0)” send detect;n; q;p () (21.9)

tick ™ time = MAX ~ src= n” obj= p” loc= q! X(set(0)”send unreac;n; p;q ()
(21.10)

tick® time 6 mMAX ™ time = v! X(sef(v+ 1)) (21.11)

send detect;n;p;q( )obs™ srv=n"loc= p” (obj=q_id = Q) (21.12)

send unreadc; n; p;q ( )tick~ time = MAX ~ src= n” obj = p” loc= q (21.13)

seflv) v = 0" (obs_tick” time = MAX ) _ v = time + 1/ tick” time 6 MAX (21.14)

up=T! FE(deliv (tick)) * FE (tick) (21.15)
End

Figure 5.2: Speci cation of sensors.

requiring the existenceof a naming attribute (id) in ead named object.

In order to treat the requiremerts related to location information acquisi-
tion and managemet) we rst adopt the speci cation of sensordn Figure 5.2.
Ead sensorshould be createdwith knowledgeof a location servicemail address
(srv) and is responsible for producing sequetial obsenations (obg of a named
located object (obj) in a specic region (Iog. Sensorsare mobile as well and
detectthemsehesin the monitored region (21.9). We omit their straightforward
generalisationto deal with the obsenation of seweral distinct objects.

Eadh sensorkeepsan internal clock which ewlvesdue to a stream of self-
addressedick messagesitiated just after the actor is created. Upon creation,
the resulting occurrenceof a computation go makesthe actor ready for the de-
livery and consumption of sudh messagesThe clock is reset, set(0), after MAX
cyclesor whenthe useris obsened (21.9 and 21.10). Axiom (21.14) guarartees
that resetsdo not happen in other occasions.Indeterminacy is treated by this
clocking medanism, which signsto the location servicethat the useris un-
reatable (unread) whenewer obsenations do not happen beforethe deadline
MAX (21.10). A detect messagewith the user location is sent to the service
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Actor MobileA gent
data typ es addr, bool (T;F : bool)
attributes  me;id; loc;to : addr, up;f wg; nul : bool
actions ag(addr’) : local + extrn birth ;
redir(addr) : local computation
sub(addr) : extrn message;
fwd(addn; mv(addr®); cp(addr’) : local + extrn message
axioms n;p;q;r;s;t:addrb: bool

ag(n;p;g)! me=n”id=p~rloc=grfwg=F" to=n (22.1)
ag(n; p;a) ! X(go) (22.2)
gorfwg=b"rto=n! Xup=T1T~fwg=b"to=n) (22.3)
redir(n)up=b! X(fwg=T"to=n"up=b) (22.4)
(go_redir(n)) *me=prid=q~loc=r! X(me=p~id=qg”loc=r) (22.5)
fwd(n) ! X (redir(n)) (22.6)
mv(n;p)* fwg=F*me=qg”id=r! X(redir(g) " send cp;n;p;q;r () (22.7)
mv(n;p)* fwg=T"to=q! X(send mv;q;n;p () (22.8)
cp(n;p;g " loc=r! X(9's new(ags;s;q;r)"send fwd;p;s () ~ send sub;n; s;r ()
(22.9)
redir(n)  fwd(n) _9p;q (mv(p;q)* me=n"fwg=F) (22.10)
9n; p new(ag n;p;q;r)_send fwd;s;n (_)send sub;t;n ( )cp(t;s;q ~ loc=r (22.11)
send mv;n;p;q( Ymv(p;g)*to=n"fwg=T (22.12)
send cp;n;p;q;r ( Ymv(n;p)*me=qrid=r~"fwg=F (22.13)
up=T! FE(deliv (cp;n;p;q) " FE(deliv (mv;r;s)) * FE (deliv (fwd;t)) (22.14)
up=T1! FE(cp(n;p;q) " FE (mv(r;s)) * FE (fwd(t)) (22.15)
End

Figure 5.3: Simpli ed speci cation of mobile agerts.

otherwise (21.9). Multiple location obsenations are obtained by many sensors
concurrerily dealing with the samelocated object and by the (fair) merge of
obsenation messagesleliveredto the location service. Unintrusivity is alsoen-
forced as no causalconnectionbetweenthe production of obsenations and user
behaviour is imposed.

If we realisethe sensorsof Figure 5.2 as optical devicesconnectedto the
architecture through radio frequencylinks, for instance,software mobility arises
only when located object ageris are considered. Sud ageris are meart to fol-
low located objects through the architecture providing location dependen func-
tionality sudh as ubiquitous messagedelivery and transportable user sessions
(Spreitzer and Theimer 1994). Although we leave this additional functionality
unspeci ed here,we presei a speci cation of mobile agernts in Figure 5.3.

We chooseto capture the handover processof mobile objects as localised
ager replication. A mobile agent g may receiwe a requestfrom p to move to the
location of anotheragert n (gmv(n; p)), presumablylocatedcloserto the object
g represets. If an agert is currertly moving to a new location (f wg = T), sud
requestswill be delayed by self-forwarding until the agert nishes to move (22.8).
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Figure 5.4: Internal evert o w of the mobile architecture.

In order to move, the original agen q issuesa requestfor the correctly located
agern n to createa local copy (cp) of q (22.7), supplying in the messageany
required information for the copy (here, in particular, just its logical nameid).
After consumingthis kind of replication request, an agert createsthe desired
replica and noti es both the original agent and the requestingservicethat the
located object represetativ e can be substituted, through the message$wvd and
sub (22.9), respectively.

To ensurecoordination betweensensorsand ageris, a location servicemust
guararteethat the asynthironousmessagethey exciangeare correctly addressed
and ordered. This situation is explained by the diagram in Figure 5.4. Once
a located object is detectedin a region (at), the location servicehasto nd
among the registered objects a corresppnding mobile agern in the region to
request the creation of a replica of the moving agert therein. The location
spaceis recurrertly queried(in) until sud an agen is found. Then, the service
requeststhe agen of the relocated object to move to the place of the correctly
located agent (move). At the end, the serviceis notied (done sothat the old
agern can be discardedand new movemen requestscan be processed.

Sincethe location servicehas to assaiate located object names(id) to
mobile agerts, to keeptrack of their location (loc) and to put agerns in contact
to support mobility, we considerthat sener nodesproviding compartmertalised
bits of this functionality, one for ead located object, are organisedin circular
lists, adopting the speci cation in Figure 5.5. Eadh sener node also records
if there is no location information available for the object (st = NL). This
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Actor Server

data typ es addr, bool; status (T; F : bool; Ok ; NL; MV : status)

attributes me;id; loc;xt; ag: addr, st : status

actions srv(addr’) : local + extrn birth ;
ch(addr®; bool) : local computation ;
mrq(addr’); ack(addn); ins(add*); done(addr?) : local + extrn message;
?(addr); reg(addr?; bool); at(addr); out(addr) : local + extrn message;
move(addr); in(addr); @addr) : extrn message

axioms n;p;q;r;s;t; u; x : addr, v : status

srv(n; p;g;r;s)! me=n”xt=p~rid=qg”loc=r"ag= s” st= oK (23.1)
ch(n;p;q;v) ! X(xt=n”"loc=p~ag=q”st=v) (23.2)
ch(n;p;ggb)* me=r"id=s! X(me=r"id=5) (23.3)
ins(n; p;g; r)" xt=sMloc=tMag=u”st=v! X(9x new (srv;x;x;s;n;p;q)" ch(x;t;u;v)) (23.4)
ins(n; p;g;r) "M xt = s! X(9t new(srv;t; t; s;n; p;g) * send ack;r;t () (23.5)

mrg(n; p;g " xt=r~loc=sMag=t! X(9'u new(srv;u;q;r;p;n;t)*send in;s;p;u ()
(2?3(ﬁ)p)" id=n"me=qg*loc=r! X(st=ok”"send @p;n;r () _st6 ok”™send ?q;n;p ()
(2?:?}17;)p) Nidé nMxt =q! X(send ?;g,n;p () (23.8)

at(id; p)* me= g xt=r"ag=s" (locé p"st=0ok_st=NL)! X(send mrq;r;s;p;q())
(Zastkgrl); p)*id = n*loc= gq*ag= s"(p6 g*st= ok _st= NL)! X(ch(r;q;s;mMV)) (23.10)

atin;p) " xt=g” (id6é n_st=mv)! X(send at;qg;n;p () (23.11)
out(n;jppMid=n”"xt = g”loc=r”"ag=s! X(ch(g;r;s;NL)) (23.12)
out(n;p)id 6 n” xt = q! X(send out;q;n;p () (23.13)
resn; p;T)" loc= s me= g~ ag=1t! X(send moves;t; q()) (23.14)
resn;p;F) " me=r"xt=s"loc=t"id=u! X(send mrq;s;t;u;r () (23.15)

dong(n; p) M xt = ! X(ch(qg; p;n; F)) (23.16)

and usual axioms for readiness, absene of unsolicited respnsesand enableness

End

Figure 5.5: Speci cation of location servicenodes.

knowledgeis usedto postpone until the object location becomesknown (23.7
and 23.8) the answer to location queries,using the messagesymbols @and ?.

Every messageaddressedto the location service circulates around the
linked list until the node with correct idertity is found. In casean obsena-
tion (at) from a sensorarrives carrying a new object location (23.9), a request
for the rest of the list to nd someagen placed therein is issuedaiming to
support the movemern to that location (mrq). For ead registeredlocated ob-
ject, the location spaceis queriedin a two step process:a cortinuation actor to
processthe query answer will be created (23.8), and this new actor will either
requestthe relocated object agen to move (23.14) or will forward the query to
the next list elemen (23.15).

The informal description of the relationship betweenead pair of speci ca-



5.2. Location Managemeh in a Formal Setting 165

(a) MobileAr chitecture  (MAr)

%

Component3 @@ o
Componentl @@ 1& %Omponen

] Sensor @gA @ @ )
MobileA gent Server "RegionTreeNode

MAg D B @ (RTN)
@ A @

@
Connectorl  Connector2 Connector3

(b) Sensor Server
unreadh——a———=out
detect ——b——= at

MA g Server
sub———c+——=— done
mv —d—= move

Server RTN
res——e——=rpl

in — 4 f——in

Figure 5.6: Composition of the architecture: Sharedactors (a) and actions (b).

tions should not substitute their formal composition, which is still missinghere.
The diagram in Figure 5.4 gives a good clue on what remainsto be de ned:
the \physical commnunication channels”, which are formally de ned using spec-
i cation morphisms. For eat pair of speci cations, individually represeted by
distinct geometric gures, that diagram shows how to relate their messagesym-
bols. For instance, the messagesnv and sub of agens should be respectively
assaiated with move and done of seners. Note that relating external to local
symbols yields the direction of the messageo w descriked above. Also obsene
in our examplethat we cannot produce a direct translation of the speci cation
of agerts into that of senersnor in the opposite direction. Therefore,to inter-
connecttheseertities we needto de ne mediating theory presenations to sene
asconnectors.Their nature is illustrated by the diagram in Figure 5.6.

To specify the linguistic structure of the mobile architecture in a formal
manner,we call the mediating speci cations in Figure 5.6.aConnector s. Eac
of them contains two external messagesynbols only (without axioms as well).
We also provide translations including their contents after necessaryenamings
into the connectedpresemations. Taking connectors,connectedspeci cations
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and the morphismsbetweenthem, the composite theory presermations are de-
ned by pushout constructions. De ned in this way, eady Component in the
gure cortains all the renamedsymbols and the axioms of the connectedspec-
i cations, but the symbols identied by the connectorsare equalised. That is
why a messagenove from seners can be understood asmv whenit is delivered
to an agen, for example,no matter its namein the composite componert. The
detailed de nition of connectorsand their morphismsappearsin Figure 5.6.b.

5.3 Verifying Location Managemen t Prop erties

The previous sectionintroduced a set of composedspeci cations related to lo-
cation managemenh and descriked the intended behaviour of the speci ed ob-
jects when properly connected.In this section,we particularise our description
providing more details about the dynamic con guration of our architecture. We
make a number of simplifying assumptionsto obtain a tractable example. In ad-
dition, we sketch the veri cation of someinteresting properties. Rely-guarariee
assertionsare proposedbelow to capture theseproperties.

5.3.1 Location Space

We considerthe existenceof a non-trivial minimally divided location spacerep-
resened by a tree of height one. This structure consistsin a root and four child
nodes, ead of which denoting a quarter of the location plane assaiated to the
respective compasspoint. The division of theselocation spaceregionsis consid-
eredto be always forbidden. In addition, we assumethat only child nodesmay
ewvertually commnunicate with cortinuation actors created by the root node to
answver inclusionqueries. Under theseconditions, whenewer a query is dispatched
to a node in the location space,the query is answered evertually:

Assertion LOC
init  k:new (node; ni;n;i;l) (i 2 [1::4]); kinew (root; I;1;R);
G(8p;g p=1_p2n! : psplit(a)
rely 8p;q (9r lI:new(cnt;q;l;r))! G(8t (9r;s;v tisend rpl;qg;r;s;v () ! t2n)
pre x:send in;z;y;x (;)z=1_z2n
post 9v z:send rpl;y;x; Vv ()

The derivability of the assertionabove is justied by a caseanalysisar-
gumert. First note that the involved actors are always evertually enabledfor
delivery and consumption. Hence,if the recipiert of a query is one of the child
nodes, becausethe result of sud queriesdependssolely on the state of the re-
cipient itself (recall that nodesare assumedo remain undivided), the answver is
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locally producedevertually (20.9). If the recipiert is the root node, the queryis

consumedga cortinuation actor is created(20.10)and the query is dispatchedto

eat child node. According to the precedingargumen, a responseis produced
for eath of thesequeries. In the end, due to our assumption, the cortinuation

actor computesthe query result after consumingonly all child node responses
(20.12).

5.3.2 Location Service

Now we can discussthe properties of the main componerts of our architecture.
Herewe analyseonly a simple situation in which there are two locationsactually
populatedand a pair of agens represeting mobile objects. Another pair of xed
agerts, oneat ead populatedlocation, is alsoassumedo exit in orderto support
the handover processof mobile agerts. All theseobjects are connectedthrough
a static circular network of sener nodeswhere there is available a sensorper
location and mobile agert.

To formalise the con guration above accordingto our previous informal
descriptions,we also assumethat there are actors which serne as mobile object
iderti ers. Theseare createdthrough the birth action name which is presumed
to appearin atheory presertation connectedo MAs . We usethe logical unique-
nessof their mail addresseso guarartee unique mobile object identi cation. The
following de nitions are alsousedin the assertionsbelow:

plodj) (nearestpopulated location) def (j  1div2)+ 1
nsv(j) (next sener) df j + 1(mod4)
psv(j) (previoussener) def | 1(mod4)
fsv(j) (nearestsener of xed agert) df 2 (j div3)+ 1
msv(j) (nearestsener of mobile agert) def 2 (j div3)+ 2

We initially want to shav that wheneer a mobile object is obsened, the
respective obsenation messagewill evertually be consumedby the sener node
in charge of keepingtrack of the location of the agert:
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Assertion M AG
init i@itl;;g-LOC; ‘
2 k:new (name na; ); k:new (name; nssf';’\f((]‘)))'
12 nxa Kinew (ag; a5 a ;naj; Npioc(j)); KINEW (SIV; SV; ; SV SVnsy (j) N 5 Nploc () & )
: knew(sensssf'gf((]')),ssf's\f((lj)),svf &v(): NSSFary i Mploc (1))
G(8j 2 [L:4];p;q;r;s sviins(p;q;r;s));
G(8ii] 2 [L41P &y su():MV(pic) _ S () reloc(p));
G(8j 2 [1:4],p (9g;r p:send at;svi;qir () ! P= SVpsy(j)_9i 2 [1::2] p= ss} SV(j))
rely rely-LOC
pre  x:0bs9i;j 2 [1:4] x=s fp's\f((lj)),x id = y;x:loc= z
post 9g 2 [1::4] svg:at(y;z) " svgid =y

Sincewe know that ead of the actors above is always eertually enabled
for delivery and consumption, we can simply ignore this property againin the
following justi cation of derivability of the assertionabove. From our con g-
uration assumptionand (21.9), we infer that oncean obsenation happensthe
respective messagas dispatched to and ewvertually consumedby a sener node.
Two distinct situations may arise: the recipiert node cortrols the relocated ob-
ject agen, or, becausethis is not the case,the obsenation is sert to the next
sener node in the circular list (23.11). The obsenation messagearrivesat the
appropriate node after reading at most four sud objects.

Now we wish to shav that whenewer a mobile object is obsened, the
respective agen ewertually reatesthe location of obsenation. Here we have
to take into accoun two facts: only cortinuation actors usedin querying the
location spacecan decidewhether to dispatch the query to the remainder of the
list or to usethe agen of the current sener node, and the relocation process
can only be completeddue to a messageeceived from the new object agert.

Assertion M OV
init  init-M AG;
8j 2 [1:4] G((9p sv;:at(id; p) ~ (sv;:loc6 p” svj:st= OK _ svj:st= NL)) !
(Og;r sy :dong(q;r))W (9s;t; u;w sv;:ag:new (ag; s;t; u;w) ~ Oqg;r sy, :done(q; r)))
rely rely-M AG;
8u (9j 2 [1:4];p;g;r;s Sy :new(srv;u;sv;;p;q;r;s)) !
G(8t (9p;qg;b t:send resu;p;qb()) ! 9 2 [L:4] t = Npoc(jy))s
8r;s;t;u;j 2 [1:4] (9p;q sv;:agnew (ag;u;p;q;r)) !
(: sv;:dong(t; S))W (t=r* s=u))
pre pre-M AG
post 992 [1::4];S SVmsy (g):St = OK ™ SVmgy (gy:@g = s” siid = y " siloc= z

We have to treat three di erent situations correspnding to the possiblestates
of the recipiert sener node: the respective agen is ready to move (st = OK),
there is no location information available at the momert (st = NL), or the agen
is currently moving (st = MV). We claim hereand shawv belowr that wheneer an
agern is moving, this processis evertually completedand the respective sener
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node is noti ed about this fact, returning to a ready state sometimein the
future. So, it suces to discussthe veri cation of the other two caseswhich
can both be treated asdiscussedn what follows.

If there is location information available saying that the agern is already
at the right location, we read our conclusiondirectly. Alternativ ely, we can
use(23.9) and (23.6) to connectLOC to M AG and concludethat a movemen
requestis dispatchedto the remainderof the circular list (23.15). The movemen
requestarrivesat the appropriate sener node after reading at most four sud
objects. As a result, a movemen requestis dispatched to the relocated object
agern (23.14). Becauseour assumptionsprevent that a movemern requestarrives
at an agern before a previous relocation processis completed, the requestis
consumedby the agent and areplication requestis readily issuedto the correctly
located agernt determinedin the precedingquerying process(22.6). Evertually,
this messages consumedthe new agert for the relocated object is createdand
not only the old agen but also the respective sener node are noti ed (22.8).
In the end, the sener enters into a ready state pointing to the properly located
new agen (23.16).

Basedon the previousassertion,we can also producean interesting exam-
ple usingour generalcomposition rule. Applying the substitution [xnx9 through-
out, we cangenerateanother assertionanalogoudo the above. Composingthese
two assertionsusing our rule and requiring that x 6 x° we can concludethat
whenewer two mobile object obsenations happen in parallel at di erent places,
the respective agens will move to the involved locations evertually.

5.3.3 Other Prop erties of the Mobile Arc hitecture

Location dependen functionality sud as ubiquitous messagedelivery can be
speci ed and veri ed basedon the framework descriked above. Eadh mobile
object agent should be able to query in terms of logical object identi ers (id)

the location servicefor the location of the recipiert. The messages dispatched
to the xed agen assumedo exist at that location. Upon receipt, sud an agert

either locally delivers the messagéo the recipiert or forwards the messagdo

another agern at the new location of the target object. In a similar cortext

which does not considertemporary absenceof location information, Sanders
et al. (1997) outlines a proof that ead messagesvertually readesthe recipiernt

provided that this object evertually stopsmoving.
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54 Summary and Related Work

As a meansof illustrating that the formalism and discipline proposedin this
thesisapply equally well to designingreal-sizedextensiblesystems,in this chap-
ter we have shovn how to approad object-basedmobile systems. As it turns
out, our logical systemand the adoptedrely-guarartee discipline can be directly
applied without any modi cation or additional coding technique to capture mo-
bility. Basically, our approad consistsin annotating located objects with an
additional attribute cortaining referencego location objects, as suggestedby
Harter and Hopper (1994), and by assumingthe existenceof a network of xed
geographicallydistributed objects which can deliver localisedreplication of re-
mote objects soasto support mobility. The advantage of approading mobility
in this extra-logical manneris that speci cation and veri cation can be carried
out much in the way that we designany systemusing the sameformalism.

A fewrelated work canbe gatheredin the literature, most of which adopt-
ing the programminglogic of UNITY (Chandy and Misra 1988). Sanderset al.
(1997) concetrate in specifying and verifying the querying and routing algo-
rithms of a mobile architecture. Their hierarchical organisation of the location
spaceis similar to ours, but the problemis treated in a monolithic, unstructured
manner, which we believe makes both speci cation and veri cation more di -
cult and error prone. Initial work deweloped by Wilcox and Roman (1996) on
attempting to extend UNITY introduced mobility conceptsjust as part of the
re nement process. If mobility arisesin a set of requiremerts, that approad
would not be so e ective: initial speci cations are required before any mobil-
ity aspect can be considered. Receltly, the sameresearth group has endaved
UNITY with elaborated logical reasoningprinciples to tackle mobility (Roman
et al. 1997,McCann and Roman 1998): ead UNITY programis requiredto de-
ne a specic variable cortaining concretelocations and transiert interactions
betweenco-located objects may occur.

In the processcalculi literature, mobility has also received a lot of at-
tention, motivating the ewlution of the static processcon gurations of SCCS
(Milner 1983)to the dynamic onesof the -calculus(Milner et al. 1992). We
have provided evidencehere that most of the featuresof -calculus processes
can also be speci ed using our logical system. For instance, we can simulate
recursion creating cortinuation actors and exdanging asyndironous messages;
dynamic data structures can be represeted as objects and so on. More im-
portantly, the requiremerts related to mobility receive a morere ned treatmernt
here as processin the -calculusare modelled as terms while we adopt theory
presemations to represen objects. On the one hand, it seemsto be easierto
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de ne notions of simulation and reduction for processesjreating in this way
the re nement and operational behaviour of the speci ed objects. On the other,
hereit is possibleto specify and reasonabout mobile objects as rst-class en-
tities using our more expressie logical system,which we feel more appropriate
to represen the real world. Orava and Parrow (1992) recognisethat -calculus
speci cations guarartee only that the speci ed featuresare possible,but these
may not occur. This can only be avoided by adjoining modal or temporal con-
nectivesto processcalculi. It would be interesting to compareour formalism to
those proposedby Milner et al. (1993)in terms of expressie power.
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Chapter 6

Concluding Remarks

In this thesis, we have characterisedextensiblesoftware systemsas those sub-
ject to functional or structural dynamic changesthat may rangeover rst class
ertities, which can be created, altered and referenced.We de ned a rst-order

brandhing time logical systemthat seemdo be expressiely rich enoughto spec-
ify and verify the properties of interest in this domain and particularised our
system accordingto speci c software developmen approadesthat appear to

enforceextensibility. In addition, we have arguedin favour of a proof-theoretic
way of dealing more e ectively with the rigorous designof extensible systems.
A number of cortributions and ideas for further work are listed belowv as an
outcomeof our researb.

6.1 Contributions

Extensible software systemshave beenincreasinglydemandedin practice, par-
ticularly asa meansof bridging the gap betweenuserrequiremens and actually
provided functionality (seeBershadet al. (1995) for an examplerelated to op-
erating systemsdesign). They have alsobecomeimportant in recen yearswith
the advert of networking architecturesthat areinherertly extensible. Although
somerecen work usedthe term extensibility to make referenceto the capability
of somesoftware architectures of preseiing extendedfunctionality at run time,
e.g. (Matsuoka 1993), we are not aware of any attempt at characterising this
notion in full. We beliewe that it is important in software designto elucidatethe
meaningof this and related notions like opennessmobility and recon gurability
| the designspaceof extensiblesystemsin the terminology of Wegner(1987)
| for the sake of avoiding ambiguity and ensuringcorrectness.
Our characterisation appearsto be theoretically important asit identi es

logical featuresthat are requiredin represeting and verifying the notions men-
tioned above. At the programminglevel, someother authors have already been

173
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concernedwith providing a formal accourt for extensibility:

A programminglanguagemay be extendedin data structuresand/or
in computation devices. Extension in data structures meansthe
possibility of (run-time) modi cation of the data environmert of a
program. This extensioncan be of two kinds: static and dynamic.

(Gergely and Ury 1991)

Howe\er, this distinction betweendata and computing units of extensionseems
to be appropriate only at lower abstraction levels. That is why we have preferred

to dewelop instead a study of various software dewelopmen approatesand on

how they enforce extensibility. The way we represen extension, relying on

hidden symbols, is similar to the aforemenioned work:

The extensionin computation devicesprovides new cortrol struc-
tures in our case. In order to introduce a new cortrol structure we
have to provide all necessaryfunctions and relations requiredto re-
alise the new cortrol. Therefore, extensionin computation devices
canalsobe de ned asa static extensionof data structures. (Gergely
and Ury 1991)

It is clearthat the rigorousdesignof extensiblesystemsrequiresa suitable
logical system. In this thesis we have de ned a new rst-or der branching time
logical systemwith equality for this purpose. Our choice of a rst-order system
with equality stemsfrom our desireto deal with communities of namedobjects
which in generalmay recon gure and grow in number without any a priori
bound. A temporal logical systemis chosenbecausewne wish to represeh many
distinct modesof interaction betweencomponerts, which may co-existand thus
behave concurrertly. Finally, the assumptionof branching o ws of time appears
to be an adequateway of talking about the existenceof somebehaviours in
which a particular evert occurs,typically in open systemspeci cations, without
committing all speci ed behaviours to presem the sameproperty. Many similar
logicscertainly exist, the temporal logic of actionsdeweloped by Lamport (1994)
is the most notable example, but we prefer to adopt our own system for the
reasonsdetailed in Chapter 2.

The raw logical systemmertioned above was particularised in Chapter 3
accordingto two distinct software dewelopmen approadeswhich enforceexten-
sibility. We have proposedan axiomatisation of the actor madel, which hasbeen
sematically studied by a number of authors. We also shaved how to compose
actor speci cations using categorical constructions called co-limits and how to
take advantage of the complexstructure of actor descriptionsto decompsethe
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veri cation process. In particular, to verify global properties of actor compo-
nerts, we introduced a new rely-guaantee discipline basedon simple temporal

sertences. Thesedewelopmerts constitute a suitable framework for open recon-
gurable systemsdesign,which indeedpresen all the aforemertioned properties
of extensiblesystems.In Chapter 3, another mode of interaction and a distinct

software dewelopmer approad were alsoshown to be represetable in terms of
actor speci cations and morphisms,which showsthat the actor model is expres-
sively rich enoughfor many purposesin software design.

In Chapter 4, we sketched, by sticking to actor speci cations but allowing
referenceso their hiddensynmbolsin a disciplinedmanner,howmeta-levelobjects
can be given a formal treatment We arguedthat sud a treatment should be
regardedas necessaryto ensurein an abstract and elegan way separation of
concernsbetweenbase-leel objects dealingwith the problem domain and meta-
level objects handling the systemitself. On the other hand, we arguedthat one
cannotrely on the assumptionof completely generalmeta-leel support, that of
computational re ection, while defendingsystematic software developmern.

Finally, we shoved in Chapter 5 that a family of mobile systemscan be
rigorously designé using the sameformal constructions proposedin the rest of
the thesis. We choseas a full examplea location managemen architecture for
mobile objects. This examplesened to illustrate that our formalism scaleswell
to the treatment of real problems.

6.2 Further Work

Our logical systemand its de nition may give rise to interesting researb. It
appearsto be worthwhile investigating if the axiom sdiemaslisted in Figure
2.15are independert from ead other. As an outcomeof this investigation, one
should be able to assessf it is possibleto reducethe number of sthemaswhile
retaining their intuitiv e meaning. Another direction for further work is to study
if aslightly distinct semartics canbe found soasto obtain a completenessesult.
This may be possiblefollowing the results already obtained by Andrela et al.
(1995) concerninglinear time logic. A more pragmatic cortinuation of this work
is to provide automated support for software dewelopmen by implemening our
axiomatisation and a number of veri cation tactics using an interactive logical
framework like Isabelle (Paulson1994).

Another areathat appearsto desere future investigationis the re nement
of speci cations in away that ensuresextensibility. We have studied approates
to the software processthat enforceextensibility and can be captured at the
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speci cation level, but a long chain of re nement stepsmay be necessarypefore
extensiblesoftware is obtained. In order to cater for the dynamic con guration
of componerts speci ed using rely-guarartee constructions, their initialisation
constrairts and assumptionsabout their environment may be realisedas coordi-
nation languageconstructs. In this case,speci cations should be re ned in the
usualway to obtain a set of programswhene\er possible. The challengehereis
to de ne a systematicmethod which is also compositional in that implemerta-
tions of any complexspeci cation canbe veri ed basedon the veri cation that
their componerts satisfy the constituerts of the original speci cation.

Someother topics studied herewhich are not directly relatedto extensibil-
ity appear to have potertial for practical application. It may be interesting to
investigatehow to capture multi-language proof calculi in terms of generallogi-
cal structures asdiscussedn Chapter 2. Our syndirony transformation de ned
in Chapter 3 should be further investigated. In particular, to determine con-
ditions ensuringthat the transformation \preserves" deadlack freedomremains
an open problem. In addition, it would be interesting to apply our discipline for
designingmeta-le\el architectures of Chapter 4 in other situations and assessf
more generalde nitions can be proposed.
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Useful Theorems

Formal proofs of the theoremsstated in this appendix may be obtained directly
from the author.

.1 Classical Prop ositional Logic

Postulating the axiomatization of classi@l propositional logic (CPL) discussed
in Section2.3, the following theoremsover 2 objSig“"* are provable:

(HS) f(p! o);(q! r)g c* p! r (hypothetical syllogism)
(REFL) “°*t p! p (re exivity)

(EXP) <"t p! ((p! 9! 0q) (expansion)

(PERM) <"t (p! (q! r)! (q! (p! r)) (permutation)
(LTRAN) ¢t (p! g ! ((r! p! (r! q) (left transitivit y)
(RTRAN) "¢t (p! g)! ((q! r)! (p! r)) (right transitivit y)
(CONT) ¢t (p! (p! q)! (p! q) (corntraction)

(NEG-L) ~°* p! (:p! 0

(DOUB) "¢t :: p! p (double negation)

(NEG-R) ~<** (p! o ! ((p! 9! :p)

(CONP) ‘¢t (p! q)! (:q! :p) (contrapositive)

(OR-L) fp! qgr! ag " p_r! ¢

(OR-R) fp! qg °" p! q_rforfp! qg " p! r_qd
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(AND-L) fp! qg ©°- p~Ar! qJorfp! qg °*- r~p!

(AND-R) fp! qgp! rg " p! g~r

(AND-E) fp”~ag " plorfp®ag " d

(AND-I)  fp;ag """ p” g

(IFF-RL) fp! gq! pg °"t p$ ¢

(IFF-E) fp$ ag °** p! qforfp$ qg °** q! p]

(DM) "t 2 (p_g9$ :pr:qfor: (pra)$ :p_: g (De Morgan)

(DIST-O A) "°* p_(@Q"r)$ (p_a" (p_r)*
(DIST-A O) [orp” (q_r1)$ (p" o) _ (p"1)]
(distribution of _ over ™)

(DIST-IF A) <"t (p! (a*r)$ (p! " (p! 1)
(DIST-IF O) [or (p! (q_r)$ (p! A _(p! 1)
(distribution of implication over ~ and _)

(REPL-CPL) fx$ yg °"" plgnx]$ p[any] (replacemen)

.2 Prop ositional Linear Time Logic

Postulating the axiomatization of linear time propositional logic (PLT L) dis-
cussedn Section2.4, the following theoremsover 2 objSig”"" - are provable:

(REPL-PL TL) fx$ yg """ plgnx]$ plany] (replacemet)
(DIST-ORV ) "Pt pVr_qgVr$ (p_qVr (distribution of V over )
(DIST-ANDV ) "P- pvV (g™ r)$ pvg” pVr (distribution of V over”)
(IDEM-F) P FFp$ Fp (idempotenceof F)

(IDEM-G) Pt Gp$ GG p (idempotenceof G)

(DUAL-GF) "°“t F(:p)$ : Gp (duality betweenG and F)

(REFL-G) “°"t Gp! p(reexivity of G)

(MON-G) Pt G(p! ! (Gp! GQg (monotonicity of G)

LA sertencewith p at the right-hand side of ead sub-formula is also provable.
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(RPL-GX) Pt Gp! Xp

(EXP-GX) Pt Gp! XGp

(G>) °7t G>

(NEG-V >) “PUt 1 (?2V>)

(NEG-V ?) “PUt : (?2V?)

(FUN-X) “PTt: Xp$ X(: p) (functionality of X)

(MON-X) Pt X(p! ! (Xp! Xg) (monotonicity of X)
(MON-GX) Pt G(p! ¢! (Xp! X0

(DIST-ANDX) TPUE X(pM g $ Xp” Xq (distribution of X over”)
(FIX-V ) P qvp$ X(g_p” qvp) (xed point of V)

(FIX-U) P pUq$ g_ (p" X(pUQ)) (xed point of U)

(FIX-F) """t Fp$ p_ XFp(xed point of F)

(FIX-G) Pt Gp$ p” XGp (xed point of G)

(COM-GX) Pt GXp$ XGp (commutativit y of G and X)
(COM-FX) Pt FEXp$ XF p (comnutativit y of F and X)
(RPL-UF) Pt puq! Fq

(MON-GF) *t G(p! q! (Fp! Fo)

(DIST-ORF) "*- F(p_q) $ Fp_ Fq(distribution of F over )
(DIST-ANDG) Pt G(p" 9 $ Gp” Gq (distribution of G over )
(DIST-ANDF) TPUL E(pMN ! Fp” Fqg (distribution of F over )
(DIST-ORG) Pt Gp_Gq! G(p_ 0 (distribution of G over )
(LIN-FX) “°P7t FpAFgl! F(p” o) _ F(p~ XFqg) _ F(g” XF p)
(LIN-G) """t G(Gp! g _G(Gq! p)

(DIST-ORGF) "°""- GF(p_q9 $ GFp_GFq

(DIST-ANDF G) Pt FG(p* g $ FGp~ FGq
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(COM-F G) "°'t FGp! GFp

(MON-GU) "°t G(p! 9! (pUr! qur)
[orG(p! ! (rUp! ruUQg)]

(MON-GW ) "°Pr't G(p! ! (pWr! gwr)
[orG(p! ! (rWp! rWqg)]

(RPL-WUF) Pt pUg$ pwg” Fq
(TRAN-W ) fp! gWr;r! gWsg "t p! gW s (transitivit y of W)

The setof axiom shemesf DUAL-GF , REFL-G , MON-G , RPL-GX ,
EXP-GX , FUN-X , MON-X , A10-G, FIX-U , RPL-UF gtogetherwith R1-
MP corresmndspreciselyto the propositional part of the axiomatization of the
temporal logic of programsproposedin (Manna and Pnueli 1983).

1.3 Prop ositional Branc hing Time Logic

Postulating the axiomatization of branching time propositional logic (PBTL)
discussedn Section2.5, the theoremsover 2 objSig”®"" below are provable:

(DUAL-AE) P8 E(: p) $ : Ap (duality betweenA and E)
(REPL-PBTL) fx$ yg "°™ plgnx] $ plgny] (replacemet)

(E-R) "°°™ p! Ep

(MOD-B) “*&™ p! AEp

(CANC-EA) "8 EAp! p(cancelationof EA)

(IDEM-A) "8 Ap$ AA p (idempotenceof A)

(MON-AE) “*&™ A(p! ¢! (Ep! Eq)

(DIST-ORE) “*®™ E(p_q $ Ep_ Eq (distribution of E over )
(DIST-ANDA) TPETL A(pM ) $ Ap” Aq (distribution of A over /)
(DIST-ANDE)  "?8™ E(p” q! Ep” Eq (distribution of E overr *)
(DIST-ORA) "™ Ap_ Aq! A(p_ 0 (distribution of A over )

(COM-A G) P8 AGp! GA p (commutativity of G and A)
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(COM-XA) "PETH AX p! XA p (commutativit y of A and X)
(COM-EF) "P8™ FEp! EFp (commnutativity of E and F)
(COM-EX) “PeTt XEp! EXp (comnutativity of E and X)

(IND-A G) "PeT- AG(p! Xp)! (p! XA Gp) (branching induction)

1.4 Classical First-Order Logic

Postulating the axiomatization of classi@l rst-or der logic (FOL) discussedn
Section 2.6, the following theoremsover 2 obj Sig®"°" are provable:

(ALL-E) “F°- 8x p[x]! p

(MON- 8) "f°- 8x (p! ! (8 p! 8x 0Q
(monotonicity of 8)

(GEN- 8) fpg F°- 8x p

(DUAL- 89) ""B™ 8x (:p)$ :9 x p (duality between8 and 9)
(REPL-F OL) fx$ yg F°- planx] $ pl[gny] (replacemet)
(MON- 89) “°e™- 8x (p! ! (9x p! 9 Q)

(EX C-89) "o 8x (p[x]! 9 $ (9x p[x]! q) provided that x 62F redq).
[or9x (p[x]! o $ (8x p[x]! 0]

(MO V-IF 8) "Fot 8x (p! qx])$ (p! 8x (qx]) providedthat x 62F regp).
(MO V-IF 9) orox (p! ox)$ (p! 9x dlx])]

(MO V-AND 8) "F°- 8x (p"qx])$ (p” 8x (x]) providedthat x 62F regp).
(MO V-AND 9) [or9x (p” qx]) $ (p” 9x qx])]

(DIST-AND 8) “F°- 8x (p"q$ 8x p”8x q
(distribution of 8 over )

(DIST-OR 9) ""°- 9x (p_q)$ 9x p_9x ¢
(distribution of 9 over _)
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.5 Many-Sorted Logic with Equalit y

Postulating the axiomatization of many-sortel logic with equality (M SFOL)
discussedin Section2.6.1, the following theoremsover 2 obj Sig"*°" are
provable:

(REPL-F OL) fx$ yg "“sF°t planx] $ plany] (replacemet)
(REFL-EQ) "MsFor x=y! y= x (reexivit y of equality)

(TRAN-EQ) "VvsfFor x=y~ry=1zI! x= z (transitivit y of equality)

1.6 First-Order Temporal Logic

Postulating the axiomatization of linear time many-sorted rst-or der logic with
equality (LT M SL) discussedin Section 2.7, the following theoremsover 2
obj Sig'" "' °" are provable:

(FUN) “tTMst f(Xq;iinXn) = XM (XqpiiiXp)=y! x=y
forany f 2 Funct() [ Attr () with arity (f) = n.

(BAR C-G) "'"“st 8x Gp$ G(8x p) (Barcanfor G)

(BAR C-X) "'"“st 8x Xp$ X(8x p) (Barcan for X)
[or9x Xp$ X(9x p)]

(BAR C-F) "“"™st F(9x p)$ 9x Fp (Barcanfor F)
(BAR C-GF) "“""st GF(9x p)$ 9x GFp (Barcan for GF)
(BAR C-FG) "‘"“st 8x FGp$ FG(8x p) (Barcanfor FG)
(BAR C-A) ‘™St 8x Ap$ A(8x p) (Barcanfor A)

(BAR C-E) "S- E(9x p) $ 9x Ep (Barcan for E)
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Remaining Cases in the Pro of of
Soundness

We dewelop herethe remaining casef the soundnesgproof for our many-sorted
rst-order branding time logic with equality M SBTL. The correspnding ax-
ioms appear in Figure 2.15.

(A2-1) Supposethat (i) ( ;N;L;w)) E p! (g! r)and (i) it is not the case
that ( ;N;L;w) F (p! ! (p! r). From (i) and two applications
of S3, it is clear that (iii) if ( ;N;L;w;) E pthen( ;N;L;w)) E gqim-
plies ( ;N;L;w;) F r. From (i) and S3, (iv) ( ;N;L;w;) F p implies
(sN;Liwi) F g, (v) (SN5Lwi) | pbut (vi) (N;L; wi) F r doesnot
hold. Applying (v) in (iv) resultsin ( ;N;L; w;) F @, which in turn canbe
usedtogetherwith (v) in (iii) to shav that ( ;N;L; w;) F r, cortradicting
(vi) in this way. Therefore,S3 and the negationof our assumptionallow us
to concludethat ( ;N;L;wi)) = (p! (! r)! ((p! 9! (p! r));

(A3-1) Supposethat (i) ( ;N;L;w;) F : q! :pand(ii it is not the casethat
(;N;L;w) E p! g From (i) andS3, it is clearthat (iii) ( ;N;L;w;) F
:gimplies ( ;N;L; w;) F : p. Using (i) and again S3, we alsoinfer that
(iv) ( ;N;L;w;)) E pbut (v) ( ;N;L;w) E gdoesnot hold. S2 and (v)
allow usto say that ( ;N;L;w;) F : g, but usingthis fact in conjunction
with (iii) shows that (iv) is cortradicted. Therefore, by applying S3 to
the negation of our assumption,we concludethat ( ;N;L;w;) E (: q!

P! (p!oa)

(A5-GV) Supposethat (i) ( ;N;L;w) F G(p! g and (i) ( ;N;L;w) F
rVp! rVgdoesnot hold. From (ii) and S3, wehave ( ;N;L;w;) E rVp
but ( ;N;L;w) F rVgisnot the case.Accordingto S7, this meansthat
(i) thereisans; 2 domL with L(w;) < L(w;j) sudrthat ( ;N;L;w;) F r
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and ( ;N;L; wy) F pforany wy 2 domL whereL(w;) < L(w) < L(w;),
and (iv) for every wy, 2 domL with L(w;) < L(wp), ( ;N;L;wy) F r
and ( ;N;L;w,) F gforany w, 2 domL whereL(w;) < L(w,) < L(wn)
are not both true. In addition, the de nition of satisfaction of Gp, (i)
and S3 show that (v) ( ;N;L; w;) F pimplies( ;N;L;w;) F q for any
w; 2 domL sud that L(w;) L(w;). Applying the secondhalf of (iii)
in (v), we infer that ( ;N;L;w,) F q for every w, 2 dom L sud that
L(wo) < L(wj). For wy, = w;, when we conjoin this partial result to
(iv), we obtain a cortradiction. We conclude, from the negation of our
assumptionand S3, that ( ;N;L;w;)) E G(p! ! (rVp! rVo);

(A7-V) Supposethat (i) ( ;N;L;w;) F (p” gV p)V p. From (i), the de nition
of satisfactionof # and S7, we can seethat (ii) thereisw; 2 domL with
L(w;) < L(w;) sud that ( ;N;L;wj) F g dgvpand ( ;N;L;w) F p
for any wy, 2 domL whereL (w;) < L(wg) < L(w;). Hence,from the rst
half of (ii) and the de nition of satisfactionof ”, it is clearthat (iii) there
is an wy, 2 domL with L(w;) < L(wm) sud that ( ;N;L; wy) F qand
(;N;L;wy) F pforany w, 2 domL whereL(w;) < L(w,) < L(Wmn).
Becausel (w;) < L(w;), we cancertainly say from the rst half of (iii) and
the secondhalf of (ii) that thereis w; 2 domL with L(w;) < L(w;) sud
that ( ;N;L;w;) F gand ( ;N;L; w) F p for any wy 2 domL where
L(w;) < L(wk) < L(w;). We concludeusing the de nition of satisfaction
of 7, S7and S3 that ( ;N;L;w;)) F (p*gvpVp! aqvp;

(A9-V) Supposethat () ( ;N;Liw) F (p_qVr and (i) (;N;Liw) F
pVr _qVr is not the case.From (i), S7 and the de nition of satisfaction
of _, (iii) thereisw; 2 domL with L(w;) < L(w;), ( ;N;L;w;) F por
( ;N;L;w;) F gandfor any wx 2 domL whereL(w;) < L(sx) < L(w;),
( ;N;L;wy) E r. Moreover, from (ii), S7 andthe de nition of satisfaction
of _, we infer that (iv) for every wy 2 domL sud that L(w;) < L(w),
( ;N;L;w) E pand ( ;N;L;w) E g are neither true or there is wy,, 2
domL sud that L(w;) < L(wy) < L(w)) whereit is not the casethat
( sN;L; wm) F r. In particular, (iv) holdsfor w; = w;, which cortradicts
(ii). Therefore, by applying S3 to the negation of our assumption, we
concludethat ( ;N;L;w) F (p_qVr! pVr_qvr,;

(A11-X) The de nition of > and S3 easily entail that ( ;N;L;w;) E >. In
particular for wy 2 domL sud that L(wy) = L(w;)+ 1, which existsand is
unique due to the isomorphismbetweendomL andcod L, ( ;N;L; w;) F
> . Therefore,applying the de nition of satisfactionof Xp, ( ;N;L; w;) E
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(A14-A) If ( ;N;L;w;)) E Apthen( ;N;L;(L * L)(w)) E p, from S8, L =
L and the fact that ead L isinvertible. But (L ¥ L)(wi) = I (W) = w;.
Therefore,using S8 and S3, ( ;N;L;w;)) £ Ap! p;

(A18-Eb eg) Assumethat (i) ( ;N;L;w;) F beg is falseand (ii) there exists
L; which agreeswith L on the state propositions satis ed up to i sud
that ( ;N;L;;(L;* L)(w)) F beg. From (ii) and S6, we infer that
Li((L; * L)(wj)) = 0. But L; L;*=1, henceL(w;) = 0. Using S6
again, we readh ( ;N;L;w;) E beg, which cortradicts (i). Therefore,
basedon S3, S8, we concludethat ( ;N;L;w;) £ E(beg)! beg;

(A19- 8) Assumethat ( ;N;L;w) F 8x p(x). From S4, for every v 2 cod N
and ewery assignmeh N, sud that N,(y) = N(y) if y 6 x or Ny(y) = v
otherwise, ( ;Ny;L; w;) F p. This holdsin particular for v = [t] ™ (w;)
sudh that t 2 Term() s sud that Class()( x) = s. Therefore, using
S3, by a structural induction argumert on the notion of interpretation
basedon the de nition of substitution and assignmeh we concludethat
(sN;Liw) F 8 p! pxnt];

(A21-EQ) Foranyt2 Term(), [t]1™(w) = [t] ™ (w), becauseerms have a
functional interpretation. From S5, we concludethat ( ;N;L; w;) E (t =

t);

(A25-NEQG) Assumethat ( ;N;L;w;) F (t1 & tp) for tq, t, free from any
attribute symbol. In particular, for any w; 2 domL sud that L(w;) <
L(w), ( ;N;L;w;) F (t1 6 t), due to S2 and because[t;] ™ (w) 6
[t (w;) and similarly for t,. From the de nition of satisfaction of G,
6 and S3, we concludethat ( ;N;L;w;) E (t, 6 t;) ! G(t; 6 ty);

(A27-EQA) Assumethat ( ;N;L;w;) F (ty = ty) for ty, t, freefrom attribute
symbols. In particular, for any L; which agreeswith L on the state propo-
sitionssatised upto i, ( ;N;L;;(L; * L)(w)) E (t; = t,) dueto S2 and
becauseft,] ™ (wi) = [t M ((L; * L)(w;)). Therefore, applying S8 and
S3, we concludethat ( ;N;L;w) F (tr=t) ! A(ty = ty).
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