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Abstract

Extensible software systemshave beenincreasinglydemandedasa means
of supporting in a more faithful way constantly changinguserrequirements and
also as a necessarylogical counterpart to rapidly evolving networking architec-
tures. Such terms as open, recon�gurable, mobile and re
exive have beenused
to attempt to describe relevant facetsof this kind of reactivesystemwith dynam-
ically varying functionality or structure. In this thesis,we not only characterise
extensiblesystemsbut alsostudy their rigorous design.

We advocate a proof-theoretic step-by-step approach to the development
of extensiblesystemsasa meansof ensuringcorrectness,modularit y and incre-
mentabilit y. By spelling out their characteristicsand identifying corresponding
logical constructions,we present asan original foundational contribution a �rst-
order branching time logical system that seemsto be appropriate as a basis
for speci�cation and veri�cation. Even though our software processapproach
is proof-theoretic, we provide both model and proof theories for the proposed
system,studying in the context of general logics important properties such as
soundness,completenessand expressiveness. We argue that other logical sys-
tems proposedin the literature are not adequateto achieve the samedesirable
e�ects in design.

We also study particular software development approaches basedon the
actor model, on dynamic sub-classingand on meta-level architectures which
could best underpin the rigorous designof extensiblesystems. Speci�c design
principles are proposedin the form of derived inferencerules with their applica-
tion guidelinesand composability notions are studied in terms of categoriesof
theory presentations. We show that reasoningabout their local properties can
be carried out basedonly on such constructionsbut global properties may not
be veri�ed without the additional aid of a rely-guarantee discipline. A seriesof
helpful theoremsand realistic examplesare developed to support and illustrate
how our ideascan be e�ectively applied in practice.
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Chapter 1

In tro duction

This thesisis about theoretical foundationsfor the designof extensiblesoftware
systems. This meansthat we are interested in providing here a characterisa-
tion of extensiblesystemsas well as studying formal theories to support their
rigorous speci�cation and veri�cation. As such, the thesis can be regardedas
the outcomeof research in three distinct subject areas: Theory of Computing,
Software Engineeringand Distributed Systems.

The pressingneedto support distributed extensiblesystemshas recently
appeared as a result of technological innovation. At the current moment, it
is possible to use portable computers, cellular phones,personal digital assis-
tants and other devicesconnectedto worldwide networks, which are in this way
sparselydistributed and fairly heterogeneous.Becausethe interconnectionsbe-
tween thesehardware components may changeat any time and it is normally
possibleto attach new equipment to the network and disconnectsomeof its
parts, it seemsto be reasonableto considerthis architectural style asextensible.
The required software components that populate thesemachines may in turn
be remotely used,createdand recon�gured. Moreover, it is often the casethat
such components can move from one node of the architecture to another. End
userscorrectly perceive thesemovements through revisionsin the functionality
provided at their current location. Software systemsorganisedin this way as
well assomeof their sub-systemscan again be regardedas extensible.

The samesort of software system is desirablefor other reasonsif we ex-
amine their engineeringprocess. Clearly, to design, implement, test and make
a software systemavailable for usemay take su�cien t time to allow the initial
requirements to changein perhapsunpredictable ways. In thosecaseswhere it
is feasibleto designthe systemso that it can be dynamically altered according
to someparticular customer needs,such solution appears to be more conve-
nient becauseit may avoid maintenance. Depending on the way the system
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2 Chapter 1. Introduction

was designed,modi�cations may be produced by agents such as the end user,
the (meta-level) objects present in the operational environment and so on, and
many may be the methods supporting this processof change, by interacting
with an appropriate sub-systemor by using the whole systemto re�ne a model
causallyconnectedto its own behaviour, for example. Thesemethods may alter
the current functionality and structure of the systemto such an extent that yet
again software systemswith thesecharacteristicscan be regardedasextensible.

It is not di�cult to �gure out that the characteristicsabove turn the de-
velopment of extensiblesystemsinto an activit y even more di�cult and error
prone than usual. It is well-known on the onehand that, given a set of require-
ments, the unique way of ensuring the correctnessof an implementation with
respect to theserequirements, meaningthat no errorswere introducedthrough-
out the development of the system,is to adopt a (set of) logical system(s)and
useformal, theoretical constructions to prove that the implementation satis�es
the speci�cation of the requirements and is therefore a valid realisation of the
system. To verify that intuitiv e properties follow from a set of speci�cations
alsoincreasescon�dencein the adequacyof each proposeddesign.On the other
hand, the step-by-step, systematic development of extensiblesystemspresents
its own peculiarities,which appear to demandparticular logical systemsto allow
if not a formal at least a rigoroustreatment. We devote this thesisto the study
of isolated designsin this processand their formal theories.

1.1 What is Extensibilit y?

It shouldbe evident at this point that extensibility is intrinsically related to the
possibility of change. It hasbeenclaimedsincethe early days of Software Engi-
neeringthat the right way of dealing with changethroughout the development
processis to anticipate them as much as possible(Parnas 1978). In e�ect, ex-
tensibility is an outcomeof anticipation. To classifythe distinct typesof change
software artifacts and related objects may su�er appearsto be necessaryhere.

1.1.1 A Classi�cation of Soft ware Changes

The occurrenceof changesthroughout the life cycle of a systemcan a�ect two
distinct kinds of entit y: speci�cations during designand the state of both system
and environment after deployment. Static changes,which a�ect a system de-
scription, are classi�ed into endogenousand exogenousby Lehman et al. (1984)
depending on the origin of the request for changes. If a change is required
due to decisionsmadeduring the design,perhapsbecausethey have made the



1.1. What is Extensibility? 3

continuation of the processimpossible,the change is regardedas endogenous.
Otherwise, if the changeis causedby a modi�cation in customerrequirements,
it is consideredto be exogenous.While static changesoblige the designerto
backtrack in the project, dynamic changesare a result of systembehaviour.

According to this classi�cation, it is possiblethat somechangebe regarded
as both static and dynamic. For example, if a systemkeepsa model causally
connectedto (part of) its own behaviour and allows this model to be changed
at run time, the description of the systemwill have changedas well as its be-
haviour after somemodi�cations in the model. An exampleof this functionality
is presented by the text editor Emacs(Stallman 1981). Softwaresystemswritten
in interpreted languagesand re
ectiv e software architectures provide other real
examplesof this kind. We shall return to theseexamplesin the sequel.

There is an additional classi�cation of dynamic changeswhich is often
useful in describingthe properties of software systems. A changeis said to be
functional whenever it results in somemodi�cation in the functionality provided
by the system. In addition, the changeis structural if it implies a reorganisation
of the interconnectionsbetweencomponents of the system. Depending on the
objects a�ected by a change, it is again possibleto classify the samechange
in both categories.For example,in a telecommunications network, if a calling-
number paging servicebecomesavailable whenever a call-forward serviceis not
accessible,asa result of applying this rule part of the network must facea struc-
tural changewhereasthe whole systemwill have su�ered a functional change.
For a software systemto be really extensible,to support someof thesetwo types
of changeis a necessaryrequirement. As a corollary of this imperative, we ob-
tain that purely functional programscannot be extensibleas it is impossibleto
capture notions of state and changein this way.

A characterisation of extensibility can be derived from the allowed degree
of dynamic changes. We say that a software system is customisablewhenever
dynamic changesrangeonly over secondclassentities such as constants from a
�xed set. Conversely, a system is said to be extensibleif changesalso encom-
pass�rst classobjects, which are dynamically created,altered and referenced.
For instance,if a Lisp program may only read con�guration �les not containing
function de�nitions, if someconcurrent processesonly admit a �xed setof con�g-
urations, thesesystemsare consideredto be customisable.Otherwise, they are
regardedasextensible.Bearing in mind this de�nition, it is easyto understand
why Agha (1986) regardsopennessas a prerequisite for extensibility: without
considering the existenceof an environment and the abilit y to interact with
other similar components therein, a systemcannot be regardedas extensible.
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1.1.2 Related Terminology

In order to further clarify the notion of an extensiblesoftware system,let us ex-
amineother terms which may at �rst seemto be directly related to extensibility
but in fact refer, as they are de�ned in the literature, to many distinct stagesof
the development process.

The terms adaptable(Alencar et al. 1995)and adaptive(Lieberherr et al.
1994)have beenboth usedto stand in moreor lessdetail for a software develop-
ment technique whereby software artifacts, speci�cations and implementations,
are de�ned in a genericway so as to allow further particularisation, which may
turn out to besubsequently necessary. Dependingon whetheror not there exists
a systematicmethod for deriving particular instancesfrom each genericdescrip-
tion, the term adaptive is used. In both cases,the main focus of attention is
in obtaining artifacts to serve as a practical basis for reusein more advanced
stagesof the development of the samesystem or throughout the life cycle of
other systems.

Lehmanand Belady (1985)useevolvability to make referenceto the prop-
erty enjoyed by somesystemsof easily allowing maintenance. Kamel (1987)
arguesthat this property is fundamentally related to the modular character of
system components. Clearly, evolvabilit y presupposesthat somedesign steps
have already happenedand assertshow easyit is to backtrack in the process.
Parnas (1978) in his paper was really referring to evolvable systems,proposing
in addition techniquesto ensuremodularit y and extensibility.

As an aside,it is important to mention that for historical reasonswe have
chosento use here extensibleas the 
agship word to stand for the family of
software systemswe are interested in treating. The sameterm has beenused
by Matsuoka (1993)only to make referenceto concurrent re
ectiv e object-based
architectures and their features. It would certainly be incorrect in the context
of this thesisto infer that, becausewe claim to be interestedin dealingwith ex-
tensiblesystems,to observe them presenting at somemoment lessfunctionality
than in a previous instant would be forbidden. Of course,we strive to support
equally not only the designof extensionand contraction, being two facesof the
samecoin, but of any kind of dynamic changeas well.

1.1.3 Approac hes to Supp ort Extensibilit y

Many ways of dealing with the designand implementation of software systems
have beenstudied in the literature servingas meansto guarantee extensibility.
As a general rule, these approaches do not depend on any particular level of
abstraction to be adoptedand fall into oneof the following categories:
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open recon�gurabilit y: Distributed systemsconsist in collectionsof loosely
interconnectedcomponents. When such interconnectionsmay vary at run
time due to the addition of new components and asa result of changesin
establishedconnections,we say that the system is recon�gurable. More-
over, if it is possible for the system to interact at somepoint with an
environment over which little if any control is kept, we say that the sys-
tem is alsoopen. The actor model initially proposedby Hewitt and Baker
(1977)and later re�ned by Clinger (1981),Agha (1986)and Talcott (1997)
appearsto be the most faithful representativ e of this approach;

dynamic sub-classing: The notion of classis widely know within the object-
baseddesigncommunity as de�ning collectionsof objects with the same
behavioural characteristics(Wegner1987). If it is possiblefor an object to
migrate from one classto another at run time, we say that dynamic sub-
classingis supported. This should not to be confusedwith inheritance,
which is a reusetechnique basedon the hierarchical organisationof object
descriptions. A detailed formal treatment of dynamic sub-classinghas
beendeveloped by Wieringa et al. (1995);

meta-arc hitectures: Computational objects are de�ned in terms of a set of
primitiv e notions. Provided that it is possiblefor someobjects to manipu-
late (a number of) thesenotions asif they wereconventional data objects,
we say that meta-levelfacilities are supported by the architecture. The
most generalcaseof meta-level support is that of computational re
ection,
whereineach object carriesa descriptionof its own behaviour and behaves
in a way causallyconnectedto such a description (Maes 1987).

The approachesabove are basedon distinct notions and give rise to exten-
siblesystemswith diversefeatures. Not all of them are fully compatiblewith the
conventional conceptof rigorous stepwise development. In the following chap-
ters, we shall study how to designsystemsin someof theseways, clarifying the
reasonsfor regarding the others as unsuitable.

1.2 Formal Design of Extensible Systems

It has long beenrecognised(and neglected)that software systemsmust be de-
signedaccordingly if they are to be extensible. Parnas(1978) recalls that:

The usual programming coursesneither mention the needto antici-
pate changenor do they o�er techniques for designingprogramsin
which changesare easy. (Parnas1978)
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If we want to considerin a formal way the designof extensiblesystems,the
situation is even worse. Kramer and Magee(1990), for example,studying the
properties of dynamically changing distributed applications, had to develop all
their analysesin a textual, informal manner. This is not a generalproblem since
well-establishedformal methods which can deal with partial correctnessand
someforms of termination do exist. VDM (Jones1990)and Z (Spivey 1989)are
classicalexamplesbut thesemethods cannot addressany form of concurrency.
UNITY (Chandy and Misra 1988)overcomesthis limitation, although it is not
meant for designingopensystems,asidenti�ed by FiadeiroandMaibaum (1997).
The problem hereappearsto lie in the fact that thesemethods were developed
without having in mind any of the aforementioned extensibility approaches.

In e�ect, extensiblesystemsare reactive systemswith dynamically vary-
ing functionality or structure. In this context, the veri�cation of termination
properties becomeslessimportant whereasthe possibility of describingconcur-
rent behaviour is paramount given that such systemsmay be in continuousand
simultaneousinteraction with many agents in their operational environment. In
many cases,termination is not only unnecessarybut also forbidden as a viola-
tion of a safety property of the system. Moreover, characteristics like naming,
which we shall examinein detail later on, are also important in order to deal
with recon�gurabilit y and openness.The most prominent formal methods and
techniquesdevoted to capturing thesenotions are examinedbelow.

1.2.1 Pro cess Calculi and Extensibilit y

Processesand systematicmethods of reasoningbasedon this notion have been
around in polished form sincethe publication of the inspiring paper by Hoare
(1978)on the speci�cation languageCSP. Later on, Hoare(1985)alsodeveloped
a collection of proof rules to allow the veri�cation of synchronous concurrent
programs. A di�erent theory distinguishing moreprocessnon-determinismthan
CSP was developed by Milner (1980) and called CCS. Milner (1983) also intro-
duceda distinction betweensynchronousand asynchronousmodesof interaction
in two di�erent processcalculi basedon CCS.In addition, heextensively studied
notions of equivalencefor processes(Milner 1989).

In spite of the widespreaduseof CSP and CCS, it soon becameclear that
such languagescould not support in direct ways the speci�cation of systemsof
recon�gurable nature. Moreover, the practice of designingdistributed systems
showed that morespeci�c modesof interaction betweenprocesswould be neces-
sary to cover someapplications in a realistic manner. Thomsen(1991)proposed
two higher-order calculi of processes,where full entities of this kind could be
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Figure 1.1: Evolution of processdesignlanguages.

transmitted as a result of interaction. Honda and Tokoro (1991) opted in the
� -calculus for asynchronous named objects so that only namesinstead of �rst
classentities could be transmitted in messages.Milner et al. (1992) also pre-
ferred namedentities in the � -calculus,sticking to a formalism consideringonly
synchronousprocesseswith recon�gurable interconnectiontopology.

The careful readermay have noticed that thesere�ned processcalculi cor-
respond in a way to each of the approacheslisted in the previoussection,which
aim to obtain extensible systemsas an outcome of the development process.
The � -calculusof Milner et al. (1992) in particular would appear to be the ideal
formalism to adopt in designingextensiblesystemssincethe object calculusof
Hondaand Tokoro (1991), the higher-ordercalculusof Thomsen(1991)and also
the lazy � -calculusof Abramsky (1990) can all be faithfully embeddedin this
formalism, as illustrated in Figure 1.1. However, processcalculi alonealsohave
their limitations such as the impossibility of specifying and verifying liveness
properties, which somereal systemsmust eventually ful�l. This is madeworse
by the fact that in a stepwise development processsomeentities may needto
be represented as part of a designbut will not (and sometimescannot) be re-
�ned into processesin the usual computational sense.Thesereasonslead us to
agreewith Tokoro (1993) in that processesappear to be a better abstraction for
understanding implementations and the semantics of concurrent programming
languagesthan they areto provide an organisedand realistic view of the problem
domain. We are thus compelled to look after another kind of formalism.
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1.2.2 Temp oral Logic and Extensibilit y

Temporal logic has been applied with great successto the speci�cation and
veri�cation of software systemssince the seminal work of Pnueli (1977). The
evolution of this subject area has been constant. Manna and Pnueli (1983)
showed how temporal proof systemscould be associated to (concurrent) pro-
gramming languagesin a natural way. Barringer (1987) solved the important
composability problem, making it possibleto rely on the structure of each pro-
gram in proving temporal properties. Fiadeiro and Maibaum (1992) raised the
abstraction level of his work by showing that open concurrent systemscould
be designedin a modular way in terms of temporal theories. Their results were
further extendedby Sernadaset al. (1995),who developed a temporal logic suit-
able for object-oriented systemsdesign. Meanwhile, Lamport (1994)and Abadi
(1996) have applied the Temporal Logic of Actions in a multitude of domains,
treating in particular the development of distributed fault-tolerant systems.

Despite theseadvances,it is surprising to discover that the designof open
recon�gurable systemscannot be directly addressedin detail with any temporal
logical systemproposedin the literature. In particular, attempting to represent
the properties of objects accordingto the actor model, oneeasilydiscovers that
a logic which can properly handle object naming as well as presenting a set of
connectives with the required meaning is not available. These characteristics
are neededin representing someextensiblesystemsaccurately.

If comparedto processcalculi, temporal logicsare not suitable for dealing
with processor program equivalencesbut have the fundamental advantage of
not committing the whole development processto a �xed abstraction level nor
to a �xed abstraction notion, dependingof courseon how they are de�ned. The
design units may represent programs, processes,theories, objects and others.
Temporal speci�cations in turn may or may not be realisable as executable
entities (Abadi et al. 1989). Emerson(1983) proposesa helpful classi�cation of
temporal logical systemsin exogenousand endogenousdependingon whether or
not expressionspertaining to the domain of someabstraction notion are covered
in the de�nition of the logical language.Remarkably, all the modal and temporal
logicsassociated to processcalculi such asthat developed by Milner et al. (1993)
are of an exogenousnature. Conversely, to achieve enoughfreedomto apply a
temporal logic in describingmany problem domainsat potentially distinct levels
of abstraction, the logic must be an endogenousone. In this thesis, we de�ne
and analysean endogenoustemporal logical system.
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1.3 Aims of the Thesis

To summarisewhat we have alreadydiscussedin this chapter, let us revisit some
of the aims of this thesis. Namely, we have hoped to:

� identify what it meansfor a software systemto be extensible;

� identify software development approacheswhich support extensibility.

We have already provided practical reasonsand examplesthat justify the great
importance currently attributed to extensiblesystems. We have also provided
an informal de�nition of extensibility in terms of possiblerun time changesand,
in addition, a comparisonwith other related software processnotions. These
developments allow us to claim that we have characterisedextensiblesoftware
systems.No similar characterisation appearsto exist in the literature.

An informal characterisation is not su�cien t to support the designof the
family of software systemswe are aiming at here. In Section1.2, we examined
someclassesof theoretical frameworks which are available in the literature and
could perhapsbe adopted to attempt to accomplishthe following two goals:

� to establishtheoretical foundations for the designof extensiblesystems;

� to show that thesefoundationscan be applied in practice to designexten-
sible systemsin a rigorous way.

We have argued that the existing formal frameworks cannot be directly ap-
plied to designextensiblesystems. Therefore, by establishingour own formal
foundations in terms of a speci�c temporal logical system, we aim to support
their rigorous designand to be able to contrast to each other in an unambigu-
ous manner the characteristics of extensiblesystemsreported in the previous
sections,i.e., their designspace(Wegner1987). This study may be useful in
decidingwhich approach to usein representing the distinct situations that arise
in practice. The remainderof the thesisdealswith theseissues.

1.4 Outline of the Thesis

Most of the following chapters have the same�xed structure. In the beginning
of each chapter, we shall present either a (not necessarilycomplete) historical
retrospective or contextual information which motivatesour work. Technical re-
sults are subsequently presented and discussed.The last sectionof each chapter
summarisestheseresults and contrasts them to other related work.
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Chapter 2 developsour proof-theoretic approach to software development.
It begins by describing a rigorous step-by-step way of dealing with software
development and its connectionswith the formal structures of general logics.
We examinetheseconnectionswith the aid of category theory. In the light of
this study, we present an incremental axiomatisation of a �rst-order branching
time logic that appearsto be an appropriate basis for the designof extensible
systems. We examinein detail somecharacteristics of the logical systemsuch
assoundness,completenessand expressiveness.

The subsequent chapter of the thesis shows how to designopen recon�g-
urable systemsusinga particularisation of the logical systempreviouslyde�ned.
We speci�cally examinein full detail the actor model, proposing an axiomati-
sation for its features and studying the composition of actor speci�cations in
terms of pushoutsin categoriesof theory presentations. We also show that the
model is su�cien tly abstract to capture not only distinct modesof interaction
but alsomany approachesto support extensibility. To verify properties of actor
systemsin a rigorous manner, we adopt a rely-guarantee discipline and prove
somemeta-logicalproperties that are helpful in practice.

Wecontinuethe investigationon applying our temporal logicalsystemwith
a study of computational re
ection and the designof meta-level architectures in
Chapter 4. We show that the assumptionof meta-level architectures is reason-
able in the designof open recon�gurable systemsas formalisedin the preceding
chapter. We alsoshow that the designof meta-level architectures, despitetheir
apparently circular de�nition, doesnot require logicswith higher-orderfeatures.
Moreover, we show that the assumptionof an underlying re
ectiv e architecture
con
icts with systematicsoftware development.

Chapter 5 presents a realistic casestudy on applying the formal develop-
ments of the thesis. We present the speci�cation and veri�cation of a location
management architecture in order to illustrate how to designin a rigorousman-
ner software systemsthat can be extendedby mobile components.

The last chapter of the thesis is dedicatedto summarisingour work and
to presenting not only our conclusionsbut alsoprospects for future research.

Throughout the thesis,we attempt to useuniform notation and terminol-
ogy. Indexespointing to our notational and conceptualde�nitions are provided
at the end of the text, after the bibliography details. Two appendixesare also
provided at the end containing the statement and some proofs of properties
assumedin the body of the thesis.



Chapter 2

Pro of Theory and Soft ware
Dev elopmen t

Sincethe seminalwork of Floyd (1967),wehavehopedto developan appropriate
theory to support rigorous software development. With his inspiring method,
Floyd was the �rst to attempt to ensurein a formal systematic manner that
computer programsperform only valid computations, in spite of the practice at
that time which was to de�ne merely how each program should compute. His
work was centred on associating in a preciseway logical assertionsto program
fragments so as to make possiblethe proof of partial correctnessand termina-
tion properties. Admittedly , his method could not scaleup to handle the full
complexity of real software systemsand programming languages.

Another landmark in rigorous software development was the advent of
abstract data types(ADTs) asproposedby Liskov and Zilles (1975). ADTs are
formal self-contained descriptionsof data typesand operationsin terms of which
the wholedevelopment processmay beunderstood. They arenot meant to stand
only for computer programs becausethe focus of attention in their de�nition
is to describe in a property-oriented relational manner the problem domain,
rather than computations, introducing the notion of abstraction in software
development. Implementations of ADTs in real programming languageswould
be obtained at the last stagesof the processafter a seriesof re�nements.

The studieson the theory of ADTs proved to be very fruitful. Many proof
calculi to support veri�cation of properties were proposedby Ehrig and Mahr
(1985),Maibaum et al. (1985)and by Sza las (1988)for equational,classicaland
temporal logics,respectively. On the semantic side,algebraicandabstract model
theoriesweredeveloped by Ehrig and Mahr (1985)and by Goguenand Burstall
(1992). Perhaps due to this logical diversity, general logics and frameworks
wereoutlined in the work of Meseguer(1990),Meseguerand Mart��-Oliet (1995).
An approach basedon manipulating ADTs using abstraction was established

11
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by Ehrich (1982) attempting to make more tractable the processof software
development, which in e�ect could be horizontally and vertically decomposed
due to the self-contained character of the manipulated descriptionsand to the
existenceof many abstraction levels, respectively.

Despite their success,it soon becameclear that the basic modularisation
units of the development process,purely algebraic theories speci�ed by ADTs
using somelogic, were not well suited to software development in general. To
be able to implement ADTs using any imperative languageof proven practical
value, for instance, it would be necessaryfor them to embody such notions as
state and assignment which could be not be captured explicitly in a purely alge-
braic manner. Moreover, the assumptionthat complexsystemscould always be
explained in terms of (possibly divergent) functions de�ned by algebraic theo-
riesput togetherprevented an appropriatedescriptionof concurrent and reactive
systems,wheremutual interferencein intermediate computation stepsplays an
important role and termination is only a representativ e of the classof eventual-
it y properties. Not all the proposedlogics turned out to be suitable to handle
this latter aspect. It has beenpossible,however, to deal with these issuesby
�xing the logic as a temporal one (Pnueli 1977) and changing the structuring
notion from algebraicto temporal theories(Fiadeiro and Maibaum 1992),even
though there is not enoughevidencethat such an approach would be useful in
capturing all the problemsof practical interest that may requirea computational
solution. The samehas also beennoted consideringthe notion of processand
the respective calculi as reported in our introductory chapter (Milner 1996).

In view of our interest in providing a tractable account for the designof
extensiblesystems,we may infer someimportant conclusionsfrom the above.
The experiencewith ADTs demonstratesthat it is paramount to develop a pro-
found understanding of software development and its underpinning notions to
avoid the risk of proposinga theory which cannotbepractically usedthroughout
the wholeprocess.For this reason,we shall choosein the sequelmodularisation
units which arenot asconcreteasprogramsnor asin
exible asADTs, which will
be shown adequateby their usefulnessin capturing real situations, but cannot
be guaranteed to addressdirectly all the problems that may require compu-
tational treatment. Understanding their underlying logical systemin terms of
generallogic facilitates the assessment of characteristics like expressibility and
composability, as well as to move to a distinct setting in casea real problem is
found that cannot be properly treated by the chosenformalism.

The purposeof this chapter is multi-fold. First we outline an approach
which we believe providesa better explanation for the processof software devel-
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opment. We try to identify which notions would allow us to treat the processin
a formal manner. Next, by providing formal de�nitions for most of thesenotions
in the context of generallogic, we establishour own particular view of both logic
and software development, which keepsseveral similarities with previously pro-
posedframeworks, but neverthelesscannot be fully described in terms of these
related works in the way they appear in the literature. We go onestep further,
applying thesenotions in the de�nition of many distinct logical systems,which
towards the end of the chapter are uni�ed to form what can be regardedas the
original foundational contribution of our work. We critically review in this way
most of the background material required to understandthe families of systems
formalisedin the remainderof the thesis.

2.1 The Pro of-Theoretic Approac h

A rigorousand systematicapproach to the processof software development has
beenproposedby Maibaum and Turski (1984). Essentially , the approach relies
on the notions of theory and interpretation between theoriesmuch in the way
that ADT speci�cations and abstraction are usedby Ehrich (1982) to organise
the software process.The main di�erence betweentheseapproachesis that the
former emphasisesthe useof syntactical constructionsof somelogic whereasfor
ADTs no speci�c prescription is made. For that reason,the �rst approach was
initially called logical.

The rationale for introducing this distinction, which weentirely agreewith,
is that it appearsmorenatural to explain softwaredevelopment in terms of theo-
riesand their syntactic interconnectionsthan it is usingsemantical constructions
likemodelsand homomorphismsbetweenalgebrasasstudiedby Ehrig and Mahr
(1985). Take as an examplea program implementing a particular speci�cation.
From the point of view of a software engineer,it can be madeclearhow to show
in a systematicand direct manner from the sourceprogram using the adopted
proof calculus that the program satis�es all the constraints posedby the spec-
i�cation and, indeed, implements it. On the other hand, to provide the same
kind of assuranceusing models, their structure must also be formally known a
priori and only after determining the classesof modelsof both speci�cation and
program is it possibleto show an embeddingof the latter into the former. Some
advocatethat the wholeprocesscanbe justi�ed only on semantical grounds,but
by relying merely on models, usually abstract notions without much linguistic
structure, we also loosetraceability, the possibility of identifying preciselyhow
distinct stagesof the development processare (linguistically) related.
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Figure 2.1: Stepsof the development process.

The logical approach is rigorously de�ned in terms of theoriesand inter-
pretations betweentheories. As far as an entit y can be explainedwithin a full
entailment system,endowed with a syntax and a notion of logical consequence,
it can be assignedto a theory, its set of consequences.In software development,
almost everything canbe explainedby a theory, from requirements to programs,
although such theories are not always formal. The motivation for using theo-
ries as modularisation units stems from their explanatory and self-contained
character. For instance, every ADT speci�cation determinesa theory but the
converseis not necessarilytrue. Having thesebasic objects at hand, one may
want to argue about their relationships and a way to do so is through the use
of extensionsand translations. As sets, there is a natural notion of extension
between theories basedon containment. As linguistic constructions, they are
equipped with a canonicalrelation of translation basedon the renamingof sym-
bols in their languages. Two particular instancesof these are inclusions that
are conservative extensionsand translations which are interpretations between
theories. Conservative extensionsprevent the creation of new consequencesfor
the original languagewithin the scope of the extendedtheory and interpreta-
tions preserve the original consequencesno matter what their representation is
in the new theory. Clearly, none of these notions are necessary, but they are
sometimesuseful.

The logical approach is systematic in that it prescribeshow the stagesof
the development processshouldbe organised.Starting from an abstract theory,
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presumably generatedby somepreviously de�ned speci�cation, an interpreta-
tion of this original theory is chosento serve as a conservative extensionof a
more concreteresulting theory. Intuitiv ely, extensioncorresponds to addition
of detail while interpretation relates two distinct levels of abstraction. This is
illustrated in Figure 2.1. Note that the resulting object doesnot have to de�ne
a program, becausemany steps may be required before this is achieved; the
speci�cation is going to be realisedin someother form due to a designdecision
or it is impossibleto producea programfrom the current theory. Also note that
the order in which extension(denoted by arrows with tails in the �gure) and
interpretation (represented by singlearrows) arecomputedshouldbe immaterial
and oncede�ned it must always yield the sameresult had the other sequenceof
operations beenchosen. The re�nement steps thus de�ned (represented using
dotted arrows) canbecomposedasoperationson theories. To support thesefea-
tures, the meta-theory of the adopted entailment systemis required to possess
someproperties (Maibaum et al. 1985).

There is no speci�c prescription in the logical approach asto which logical
systemshould be used,as soon as it supports the two main activities of rigor-
ousdevelopment, designand implementation, in a syntactic manner. Maibaum
et al. (1984) adoptedan in�nitary conservative extensionof classical �rst-or der
logic. Actually, the work of Maibaum and Turski (1984) suggestedthat many
systemscould be used,onefor each stageof the process.Here,sincewe are only
concernedwith designsconsideredin isolation, wemay adopt a singlelogical sys-
tem, but it is worthwhile mentioning that there is a variety of them to be chosen
and each one can make software development more or lesspainful depending
on its features. For instance, it would appear intuitiv e to regard propositional
intuitionistic logic as a strong candidate, given its tight connectionswith the
typed � -calculusvia the Curry-Howard isomorphism(Howard 1980),hencewith
computable functions. However, as already mentioned, software development
takesplace as a gradual processof decreasingabstraction. It may well be the
casethat, in the middle of the process,the designerproducesa speci�cation
intending to describe how a single individual or a community of living entities
behave. In such situations, it would be quite restrictive to usean intuitionistic
logic. In contrast, choosing proof-calculi without �nitary presentation would
immediately prevent reasonableautomated support.

Concerning the basic building blocks of design, as soon as they de�ne
theories, no prescription is made as well. A formal theory may be presented
by a �nite set of axioms written in a languageallowed by the chosenlogical
system. The original theory may be recovered from theseaxioms through the
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Theory PA
sorts nat
constan ts 0 : nat
operations s : nat ! nat; + : nat � nat ! nat; � : nat � nat ! nat
axioms
: (0 = s(x)) (1.1)
s(x) = s(y) ! x = y (1.2)
x + 0 = x (1.3)
x + s(y) = s(x + y) (1.4)
x � 0 = 0 (1.5)
x � s(y) = x � y + x (1.6)
p[xn0] ^ (8x � p[x] ! p[xns(x)]) ! 8x � p[x] (1.7)

End

Figure 2.2: Classical�rst-order theory of Peanoarithmetic (Kr•oger1990).

application of inferencerules. For the purposeof software design,the fact that
a theory cannot be �nitely presented should indicate that either the chosen
logical systemis not adequate,becauseit is impossibleto represent a problem
of interest, or the problem is not to be captured, due to a decisionin the design
of the formalism. Therefore, it makessenseto restrict our attention to �nitely
presentable theories and regard only their presentations as speci�cations. It
is important to stress that this requirement is stronger than what is usually
understood in logic by the �nite axiomatizability of a theory becausewe require
the axiomatisation to be supplied. Interestingly enough,the existenceof a �nite
axiomatisation dependson the chosenlogical system. For example,in �rst-or der
logic the axiomatisation of the theory of Peano arithmetic in Figure 2.2 is not
�nite | (1.7) generatesan in�nite set of axioms,one for each formula p | nor
there is a �nite one(Ryll-Nardzwski 1952). Neither of theseassertionsare true
if we considerfull second-order logic instead.

Initially , all the e�ort wasdirectedtowardscharacterisinghow implementa-
tion stepscould be compartmentalised due to the useof conservative extensions
and interpretations betweentheories. A controversystatedby Diaconnescuet al.
(1993) concerningthe use of an apparent semantic counterpart to the former
notion had to be spelled out by Veloso(1992). In essence,the claim was that
the software processcould be best described in terms of model expansionsbut,
as it turns out, due to the existenceof conservative non-expansive extensions,
model expansionsdo not characterisesomesyntactic constructionsof practical
interest. Despite theseadvances,it was only recently that a convincing expla-
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nation of horizontal structuring was developed. Fiadeiro and Maibaum (1992)
showed that conservative extensionscould not be seenas the basic mechanism
for composing theories. In point of fact, to achieve composability in software
development, the possibility of putting theory presentations together to form
complexsystemdescriptions,oneshouldbe preparedto usecreative extensions.
The useof such extensionshasbeenidenti�ed with the emergenceof properties
of components when placedin complexcon�gurations (Fiadeiro 1996).

Combining the assumptionsof the logical approach and the requirement
of using only �nite presentations of theories and proof calculi, it seemsmore
sensibleto considerthe approach above to be proof-theoretic. We stressin this
way the fundamental importance of proof-theory as the support upon which
speci�cations, interpretations and their veri�cation, the coreobjects in rigorous
design,areconstructed. By this, wearenot proposingto abandonmodel-theory;
this does not appear to be appropriate especially in using incomplete logics
or trying to achieve higher con�dence in a design; nevertheless,we seeproof-
theoretic constructionsasthe right objects to dealwith in softwaredevelopment.

The approach described sofar hasbeenrecastin terms of categorytheory
by Fiadeiro and Maibaum (1996). Using this new formulation, let us show as
an aside that this approach is useful to clarify the nature of someimportant
properties. The most desirableof theseappears to be compositionality, which
relateshorizontal (design) and vertical (implementation) structuring in the de-
velopment process.Jones(1990) proposesthe following characterisation:

The needis for development methods which have the property that
implementations which satisfy speci�cations of sub-components can
be composedso as to satisfy the speci�cation of a system without
further proof. A compositional development method permits the ver-
i�cation of a designin terms of the speci�cations of its sub-programs.

(Jones1990)

Clearly, compositionality is a relation between the way speci�cations and pro-
gramsare composedand veri�ed. Using the terminology of Jones,it meansthat
if we have S0 as a speci�cation of a systemcomposedby two speci�cations S1

and S2 connectedthrough a third onecalled S and we implement each of them
respectively asP 0, P1, P2 and P, we expect the existenceof a \unique" way � of
seeingthe program P 0 as an implementation of S0 such that it is a composition
of P1 and P2 connectedthrough P. This is depicted in Figure 2.3.

The point hereis that, in a compositional development process,the original
speci�cations and their structuring are indeedpreserved in each implementation
step. In categoricalterms, this property is captured when we say that there is
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a functorial relation between the categoriesof programsand speci�cations. In
the �gure, this relation can be represented within the samediagram due to the
useof a retrieve functor Retr which maps each program into a corresponding
speci�cation. The functor plays the role of conservative extensionsasexplained
above and the morphisms interpreting speci�cations into retrieved programs
completean implementation step. The notion of satisfaction of a speci�cation
by a program is generalisedin this way. The fact that an implementation step
is compositional, meaningthat � is unique up to isomorphism,is automatically
ensuredwhenever Retr is a functor (Fiadeiro and Maibaum 1996). All these
formal constructionsjustify the desirablereal situation in which it is possibleto
divide the complex task of verifying that an implementation satis�es a design
basedon the re�nement of its components, as identi�ed by Jones.

Another interesting property called full abstraction is often mentioned in
the literature. Despite this fact, there does not seemto exist a consensual
de�nition, although somesay that this notion is related to the absenceof im-
plementation details in each speci�cation:

A (model-oriented) speci�cation is biased on an underlying set of
states. The model is biased(with respect to a givensetof operations)
if there exist di�erent elements of the set of stateswhich cannot be
distinguishedby any sequenceof operations. A model is su�ciently
abstract providing it can be shown to be free of bias. (Jones1990)

Moving away from model-oriented speci�cations as in VDM and their speci�c
notions of state and operation, one may simply say that each biased model
contains information which is uselessfor the particular speci�cation in its current
level of abstraction. Speci�cations in turn are said to be fully abstract whenever
their models are not biased. Turski and Maibaum have an interesting point
of view concerningthe description above, which givesus enoughmotivation to
provide a rigorousaccount of that notion in a similar way to compositionality:

In full generality, the problem of a speci�cation being without bias,
or `su�cien tly abstract' in Jones' terminology, is one that requires
a speci�c context for its resolution. If a speci�cation is considered
separately, as an expressionof a linguistic level, without a history
(the speci�cation for which the current one is an implementation
or `program') and without future (programsthat satisfy the current
speci�cation) the problem is not very meaningful. (Turski and
Maibaum 1987)

Considering this point of view, it appears to be more appropriate to regard
full abstraction as the methodological property that distinct programs can be
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distinguished by somespeci�cation. Many distinct ways of re�ning the same
speci�cation may exist and the information it conveys doesnot needto be to-
tally useful for all purposes,whereasit should be essential for some. A typical
exampleis the systematicaddition of concretedetails aiming at a speci�c imple-
mentation platform. If a component in a complexcon�guration is only to read
data from a commonstoragein a shared-variable mode of interaction, none of
its operationswill changethe sharedstate. Hence,speci�cations taking this fea-
ture into account would appear to be implementation biasedif seenin isolation.
Consideringthat the samecomponent is to be implemented in a shared-memory
platform, its speci�cation and the adopted re�nement method may well be re-
garded as fully abstract. As in the caseof compositionality, we can provide a
categoricalcharacterisation of full abstraction as shown in Figure 2.3.

The fact that a re�nement method is fully abstract ensuresthe construc-
tion of implementation stepswith enoughfreedomto distinguish through some
speci�cation and realisation any pair of distinct programs. Supposethat the
re�nement P1 of a speci�cation S1 is supported by an interpretation between
theories�1 and the samehappens,respectively, with S2, P2 and i2. We say that
the method partially captured by Retr is fully abstract if for any such objects,
[Retr (P1)] and [Retr(P2)] are equivalent (� -isomorphic) whenever P1 and P2

are also related in this way by some� . Note that this is in keepingwith the
view that a set of possiblespeci�cations, determinedhereby a powersetfunctor
[�], de�nes the meaning of each program1. Seenas above, full abstraction as
well as compositionality should be sought in any development method, much
in the way that they are in de�ning programming languagesemantics (Pnueli
1985b). They are not, however, properties of every method: both are captured
whenthere is a functorial relation betweenprogramsand speci�cations (because
functors preserve composition and isomorphisms),but only for somerestricted
methods relating such categoriesof objects will they hold.

2.2 Logic in General

As illustrated in the previous section, category theory can play a central role
in providing a formal and genericaccount of software development and logic.
Instead of stressingthe intensional character of collectionsof objects as in set
theory, categoriesprovide an extensional perspective of someproblem by fo-
cusingmainly on relationshipsbetweenobjects. In what follows, the notion of

1The application of the functor [�] to speci�cations can be de�ned as [S] def
= f S0jS0 ! Sg

and to the morphisms in the category as [i ] def= [dom i ] ! [cod i ] which is the caseif and only
if [dom i ] � [cod i ]. The usual semantics functor is de�ned as [[�]] def= [�] � Retr .
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Figure 2.3: Properties of the development process.

category is de�ned as in the classicaltextbook of Goldblatt (1979):

De�nition 2.2.1 (Category) A categoryC consistsof:

� a collection2 of entities called objects, represented as obj C;

� a collection of entities called morphisms, represented as morph C;

� two operations assigningeach morphism f of morph C to objects dom f
and cod f in obj C, called the domain and codomain of f , respectively.
Each f in morph C with domf = a and cod f = b is written as a

f
! b;

� an operation � called composition assigningeach two morphisms f and
g of morph C having dom g = cod f to another morphism (g � f ) in
morph C, the composite of f and g, where dom (g � f ) = dom f and
cod (g � f ) = cod g, such that for every f , g and h in morph C with
domg = cod f and domh = cod g, the associativity axiom holds:

(ASS) h � (g � f ) = (h � g) � f ;

2To make clear our choice of foundational notions concerningset theoretic structures, col-
lection here means a set or a class indistinctly . Hereafter, we shall not worry about such
foundational issues.
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� an operation assigninga morphism id a in morph C, domid a = cod id a =
a, to each object a of obj C, the identity morphismof a, such that for any
f and g in morph C with cod f = a = domg, the identity axiomshold:

(ID) id a � f = f and g � id a = g.

We have already provided examplesof collectionsof objects, speci�cations and
programs,that may possessenoughstructure to determinecategories,whenthey
are related through morphismsde�ning interpretations betweentheir theories.
In Figure 2.3, we discussedsomecollective properties of thesecategorieswhen
connectedby a functor, a morphism of the categoryof categories(i.e., between
categories). As in that case,studying someparticular problem, it is almost
always the casethat one is searching for a universal property, characterisedby
the existenceof an object or morphism de�ned up to isomorphismwhich enjoys
the particular property and is related to each of the other similar membersof the
categoryin a uniqueway. Compositionality, say, wasassociated to the existence
of a unique morphism � relating complex speci�cations to retrieved programs
that recordsthe way they wereoriginally composed.As illustrated through that
�gure, it is sometimesmore convenient to study these properties in terms of
diagrams, the corresponding diagrammatic presentations.

In order to manipulate the basicbuilding blocksof the development process
as objects in a category, we rely on the de�nition of their grammar in terms of
signatures, usually �nite setsof symbols, and on the existenceof a relation of
consequencebetweensentencesand sets thereof de�ned in terms of a language
allowed by the grammar. In this setting, it is possibleto considertheories as
objects, interpretations asmorphismsand discusstheir propertieswithin speci�c
categoriesof theories. This theory-basedview of logic was initially proposedby
Fiadeiro and Sernadas(1988) in the form of � -institutions, later revisited by
Meseguer(1990) as entailment systemsand �nally generalisedby Fiadeiro and
Maibaum (1993). In their de�nition below, we usethe notion of sequenceand
the following notation. Given a set S, we usethe superscript + in S+ denoting
the set of non-empty sequencesof S-elements and � in S� def= S+ [ f � g containing
the empty sequence� . In addition, we usethe subscript f in in Sf in representing
the set of �nite sequencesand 1 in S1 stands for the respective set of in�nite
sequences.Of course,thesenotational conventions may be combined, in which
casethey have the expected meaning. We also write sequencelength as len S
and sequenceconcatenationasR : T or s : R, s 2 S, for sequencesR, S, T.

De�nition 2.2.2 (En tailmen t System) An entailment systemis a 5-tuple �
= (Sig, L , E, G, ` ) where:
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� Sig is a categoryof signatures;

� L is a set of logical symbols;

� E : Sig ! Set is a forgetful functor. E associates each signature � in
obj Sig to its set of extra-logical symbols such that E(�) \ L = f g;

� G : Sig ! Set is a functor de�ning a languagegrammar. G associates
to each signature � in obj Sig a set of legal sentences G(�) � S+ where
S def= E(�) [ L . For p 2 G(�), p � s1 : : : sn , we extend the de�nition of E
as follows: E(p) = f si jsi 2 E(�) g;

� ` is a function associating to each � in obj Sig a binary entailment relation
` � � P (G(�)) � G(�). � is fully strongly (weakly) structural if and only
if for any 	 1 [ 	 2 [ f p;qg � G(�), the following conditions are satis�ed:

1. re
exivity: 	 1 ` � p for every p 2 	 1;

2. monotonicity: if 	 1 ` � p and 	 1 � 	 2 then 	 2 ` � p;

3. transitivity: if 	 1 ` � p for every p 2 	 2 and 	 1 [ 	 2 ` � q, 	 1 ` � q;

4. strong (weak) structurality: for every � : � ! � 0, if 	 1 ` � p, there
is an empty (�nite) 	 0

� � G(� 0) such that G(� )(	 1) [ 	 0
� ` � 0 � # (p),

where� # (p) is de�ned by pointwiseapplication of � : for 1 � i � lenp,
� # (pi ) = pi if pi 2 L or � # (pi ) = � (pi ) otherwise.

Roughly speaking, an entailment system supports the manipulation of a fam-
ily of theories basedon three components: a category of signatures;a family
of languagesendowed with a common grammar and a classi�cation of their
ground symbols; and a family of entailment or consequencerelations, one for
each signature. Signaturesin generalhave someadditional structure, which can
be forgotten through the functor E yielding a set of extra-logical symbols. The
languagegrammar can only be de�ned in terms of thesesymbols together with
logical symbols, such as connectives, variables and others in L . This require-
ment cannot be found in (Fiadeiro and Sernadas1988,Meseguer1990,Fiadeiro
and Maibaum 1993) and is introduced here due to the assumption that each
entailment system has a closedvocabulary of symbols. That is, although dis-
tinct extra-logical symbols may appear in each signature, despite the fact that
the choice of their namesis immaterial becausethey can be renamedby sig-
nature morphisms, this assumption rules out the introduction of new logical
constants as the systemis used. We would not be able to regard our approach
to logic as formal if new symbols and notation could be introducedat will, es-
pecially becauseit would be impossibleto develop meta-logical results such as
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the deduction theorem which depend on performing inductive arguments over
the languagesof the system. Providing the required symbols explicitly also fa-
cilitates extending the de�nition of entailment systemsto deal with theoriesas
described below.

The properties of full entailment relations are usually found in any kind
of logical consequence.Re
exivit y says that everything assumedis entailed.
Monotonicity guaranteesthat with moreassumptionswe cannever concludeless
properties. Actually, we have favoured monotonicity in lieu of compactness,as
proposedby Fiadeiro and Sernadas(1988),sincesomeof the temporal logicswe
shall study fail to guaranteethat any property entailed by a setof assumptionsis
alsoentailed by a �nite subsetthereof. Transitivit y, sometimesconfusinglycalled
cut, captures the fact that using conclusionsas assumptionsdoesnot allow us
to concludemore properties. Note that entailment relations do not capture the
relation of derivabilit y betweensetsof sentencesand singlesentenceswhen they
are manipulated by inferencerules of a proof calculus. For classical �rst-or der
logic, say, ` � capturesthe validities over the signature�, which are independent
from the proof calculusadopted.

Onenotion that entailment relationscancapture is the possibility of trans-
lating a validit y over a signature into another onebelongingto the languageof
a di�erent signature. This is useful when it is necessaryto proceedin a deriva-
tion within the context of a distinct presentation. For that e�ect, Meseguer
(1990) proposed` -translation: that the translation of an entailed sentence is
entailed by the translation of the set of sentenceswhich supported the original
relationship, i.e., strong structuralit y. It turns out that, for somelogical systems
of practical interest which we shall study in the next chapter, this condition is
too strong. In a sense,the target entailment may be too weak to support the
original oneas such. That is why the existenceof a �nite set of sentences	 0

� is
requiredin (4) sothat, adjoinedto the translation of the original set,ensuresthe
entailment of the translated sentence (Fiadeiro and Maibaum 1993). In most
cases,̀ -translation is enoughand can be recoveredby putting 	 0

� = f g.

Theories are de�ned as follows. Given an entailment system(Sig, L , E,
G, ` ) and a set of sentences	 � G(�) over � in obj Sig, the set of theorems
Th`

� (	) def= f p 2 G(�) j	 ` � pg is called the theory of 	 over �. It is thus the
closure of 	 under the binary relation ` � . Theoriesand set inclusion determine
a categoryTh .

Using the de�nition of theory, we can lift a categoryof signaturesSig to
a categoryof logical theoriesTheo as follows. For each � in obj Sig, Th� (	)
in obj Theo if and only if 	 � f p 2 G(�) jf g ` � pg. Moreover, for each Sig-
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morphism � : � ! � 0 and each f Th� (	) ; Th� 0(	 0)g contained in obj Theo ,
there is a morphism � : Th� (	) ! Th� 0(	 0) in morph Theo if and only if
f � # (p) 2 G(� 0)jp 2 Th� (	) g � 	 0

� � Th� 0(	 0), where � # and 	 0
� are as in

De�nition 2.2.2. Wesay that a theory morphism� : Th� (	) ! Th� 0(	 0) having
� : � ! � 0 as underlying signature morphism is an interpretation between
theories whenever f � # (p) 2 G(� 0)jp 2 Th� (	) g � Th� 0(	 0). Furthermore, � is
said to be faithful 3 if and only if, for every p 2 G(�), 	 0 ` � 0 � # (p) if and only
if 	 ` � p. We can now de�ne what is meant by a theory presentation:

De�nition 2.2.3 (Theory Presentation) Given an entailment system(Sig,
L , E, G, ` ), a theory presentationis a pair � = (�, 	) where:

� � in obj Sig is a signature;

� 	 � G(�) is a �nite set of extra-logical axioms.

As we have already hinted, a weaker notion is that of a �nitely axiomatizable
theory: Th� (	) is �nitely axiomatizableif and only if there is a theory presen-
tation (� ; 	 0) such that 	 0 ` � p whenever p 2 Th� (	) and only then. The
lifting of Sig to Theo naturally extendsto categoriesof presentations Pres and
�nitely axiomatizabletheoriesFinAx by requiring respectively that 	 be �nite
or Th� (	) be �nitely axiomatizable for each 	 � G(�). In practice, we often
work with the respective sub-categoriesof Th .

A formal account to logic would not be accuratewithout treating the no-
tions of model and satisfaction. The theory of institutions proposedby Goguen
and Burstall (1992) can be usedto deal with thesesemantic notions in an ab-
stract manner:

De�nition 2.2.4 (Institution) An institution is a 4-tuple (Sig, G, M od, j=)
where:

� Sig is a categoryof signatures;

� G : Sig ! Set is a functor de�ning the languagegrammar;

� M od : Sig ! CA T op is a functor associating to each � in obj Sig a
categoryM od(�) = Mo d � of modelsof �;

� j= is a function associating to each � in obj Sig a binary satisfaction
relation j= � � obj Mo d � � G(�). For any � : � ! � 0, p 2 G(�) and � 0 in
obj Mo d � 0, � 0 j= � 0 � # (p) i� M od(� )( � 0) j= � p.

3If � : (� ; 	) ! (� ; 	 0) is a faithful morphism, then it captures the conservative extension
Th� (	) � Th� (	 0).
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In institutions, the categoryof signaturesand the grammar functor are similar
to the components of an entailment system,but the requirement of vocabulary
closureis absent becausethis neither can be a generalmodel-theoreticproperty
nor does it appear in the original de�nition of institution. Actually, it would
falsify any Upward Skolem-L•owenheim theorem (seevan Dalen (1994) for an
example). The functor M od associates signaturesto categoriesof models be-
longing to obj CA T op, the dual to the category of categoriesCA T with all
morphismsreversed.The function j= is analogousto ` and each satisfactionre-
lation respects the semantic counterpart to strong-structurality which requires
that truth be invariant under change of notation, the satisfaction condition.
Whenever this semantic condition is too strong to be obtained, e.g. in weakly
structural entailment systems,we shall indicate how it can be approximated.

The de�nition of the functor M od and the function j= can be extendedto
the categoriesof theoriesinduced by the signaturesof a speci�c full entailment
system. For instance, M od : Th ! Cat op associates each theory Th� (	) to
a category of models Mo dT h � (	) , where � in obj Mo dT h � (	) if and only if
we have � j= � p for every p 2 Th� (	). The semantic consequencerelation
j= � � P (G(�)) � G(�) is de�ned as 	 j= � p if and only if � j= � p whenever
� j= � q for every q 2 	, for every � in obj Mo d � . For a �xed � , wewrite 	 j= �

� p.
This relation generatesa semantic notion of theory Thj=

� (	) complementing
Th`

� (	).
A logic is de�ned by putting together a full entailment system and an

institution so that they sharethe samecategory of signatures,but the closure
of the syntactic grammar is semantically forgotten, obeying the following:

De�nition 2.2.5 (Logic) A logic is a 9-tuple (Sig, L , E, G` , ` , Gj= , M od, j=,
� ) where:

� (Sig, L , E, G̀ , ` ) is a full entailment system;

� (Sig, Gj= , M od, j=) is an institution;

� � : G̀ ) Gj= is a natural isomorphism;

such that the soundnesscondition holds: for any � 2 obj Sig and each 	 [ f pg �
G̀ (�), 	 ` � p implies f � � (q)jq 2 	 g j= � � � (p). If, in addition, the converse
of this condition holds, then the logic is said to be complete.

We say that an entailment relation is compact if and only if for every �, 	 ` � p
implies the existenceof a �nite 	 0 � 	 such that 	 0 ` � p. The sameappliesto
semantic consequencerelations. Sometimes,due to the failure of compactness,
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completenessasde�ned abovecannotbeobtained. In this sense,our de�nition is
of a strong notion occasionallycalled adequacy. It may be useful to study weak
and medium completenessnotions where 	 is consideredto be always empty
and �nite, respectively. It also makessenseto talk about relative soundnessor
completenessnotions, wherethe entailment and satisfactionrelations of distinct
logics are related accordingto the conditions in the de�nition above. The dif-
ferencesbetween G̀ and Gj= as well as between Th`

� and Thj=
� for each � in

obj Sig are normally ignored for the sake of simplicity.
As discussedin the previoussection,we considerthe notion of proof calcu-

lus to be the basisupon which our approach to software development is de�ned.
Each proof calculusprovides a systematicmethod, de�ned in terms of the no-
tions of axiom schemaand inferencerule, for determiningwhetheror not a single
sentenceis a consequenceof a set of sentences. It alsoappearsto be reasonable
to say that, when an entailment system is associated to a proof calculus, this
last structure generateseach theory and supports their manipulation, in that
the calculusprovides rigorous tools for classifyingtheory morphismsand �nd-
ing derived properties. Someattempts to capture the notion of proof calculus
in generic form have already appeared in the literature. Meseguer(1990), to
abstract away the structure of each derivation through category theory, useda
generalisedformal construction called multi-category. A distinct approach was
adoptedby Harper et al. (1994),who studied the representation of proof calculi
using judgement rules of a particular type theory. Here,sincewe do not want to
commit ourselves to any additional formal apparatus, a set-theoreticde�nition
is proposedbelow:

De�nition 2.2.6 (Pro of calculus) A proof-calculus is an 8-tuple (Sig, L , E,
G, ` , Ax , ` , Pr ) where:

� (Sig, L , E, G, ` ) is an entailment system;

� Ax : Sig ! Set is a functor assigningeach signature� in obj Sig to a set
of logical axioms Ax(�) � G(�) such that p 2 Ax(�) implies f g ` � p.
Ax(�) is generatedby a �nite set of axiom schemaswritten in terms of
schematicvariablesranging over G(�) and logical symbols in L ;

� ` is a function associating each � in obj Sig to a binary derivability
relation ` � � P+ (P (G(�)) � G(�)) � G(�) such that 	 ` p whenever
(�; p) 2 ` � and 	 = f qj9� � (� ; q) 2 � g. Each p is a conclusion, 	 and �
are setsof premisesand of assumptionsto be discharged respectively. ` �

is generatedby the application of a �nite set of inference rules written in
terms of schematic variablesand logical symbols;
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� Pr is a function associating each � in obj Sig and 	 [ f pg � G(�) to a
set Pr � (	 ; p) of tree-structured derivationsof a conclusionp from a set of
assumptionsor hypotheses	. Pr � (	 ; p) is the smallestset of derivations
organisedin proof stepsaccordingto the following inductive scheme:

1. if p 2 	 then (f g; p) 2 Pr � (f pg; p) (assertionof an assumption);

2. if p 2 Ax(�) then (f g; p) 2 Pr � (f g; p) (useof an axiom schema);

3. if � = f (� i ; pi )j� i [ f pi g � G(�) g (a set of derivation contexts), D =
f (di ; pi ) 2 Pr � ( i [ � i ; pi )j i � 	 ; 9c 2 � � c = (� i ; pi )g (a set of
derivations) and � ` � p then (D; p) 2 Pr � (	 ; p) (application of an
inferencerule)4;

such that the faithfulness condition is postulated: Pr � (	 ; p) 6= f g and
8(D; p) 2 Pr � (	 ; p) � (D = f g ! 	 = f g) i� 	 ` � p.

A proof of p over a presentation (�, 	) is a derivation of p with 	 as the set
of hypotheses.We say that p is derivablefrom 	 in this case. A generic proof
of p is a derivation of p with the empty set of hypotheses,in which casep is
said to be provable. A proof calculus is said to be formal only if derivations,
which have �nite length, are composedsolely by the application of inference
rules taking a �nite number of premises.Otherwise, the calculus is considered
to be semi-formal, di�ering from informal structures just becauseof its rigorous,
though not �nitary , de�nition. An exampleof a semi-formalcalculusis that of
! -logic, de�ned by Chang and Keisler (1977) as an extensionof classical�rst-
order natural deduction with an in�nitary inferencerule which takesan in�nite
number of instancesof a formula aspremises,onefor each natural number, and
allows the conclusionof its universal generalisationas a quanti�ed sentence.

The de�nition of Pr deservesfurther attention. A set of application exam-
ples is provided in Figure 2.4 to show that Pr is generalenoughto capture the
usual proof calculus styles. As stated above, Pr � (	 ; p) is a set of derivations
of a conclusionfrom a set of assumptions. We use this set to de�ne a family
of entailment relations by postulating a faithfulness condition. Note that we
disregardsingleassertionsof assumptionsas generatingentailments to prevent
them from always being re
ectiv e. We could have alsoassumedthe existenceof
a set of logical labels and consideredlabelled sentencesand proof steps. That

4It is worthwhile mentioning that weconsiderthe di�eren t ways of dealingwith assumptions
using inference rules as the only essential distinction between the usual proof calculi styles:
while Hilbert-style calculi do not allow us to discharge assumptionsusing inferencerules and
prioritise in this way axiom schemas,natural deduction rules dischargeassumptionsexplicitly
and sequent calculi rules internalise this treatment.
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Hilbert style:

1. sa
2 : p ^ (q _ r ) $ (p ^ q) _ (p ^ r ) DIST-A O (see App endix-I)

2. (D a
1 ; sa

1) : p ^ (q _ r ) ! (p ^ q) _ (p ^ r ) IFF-E 1 (see App endix-I)

This annotated genericproof is justi�ed by the fact that sa
2 2 Ax (�) (�rst casein

De�nition 2.2.6) and that (D a
1 ; sa

1) 2 Pr � (f g; sa
1) (secondcasein the de�nition),

allowed by the schema and rule stated in Appendix I. Note that D a
1 = f (f g; sa

2)g.

Natural deduction:

sb
4:1 : [p ^ (q _ r )]

^E

(D b
3:1; sb

3:1) : q _ r

sb
6:1 : [p ^ (q _ r )]

^E

(D b
5:1; sb

5:1) : p sb
5:2 : [q]

^I

(D b
4:1; sb

4:2) : p ^ q
_I

(D b
3:2; sb

3:2) : (p ^ q) _ (p ^ r ) (D b
3:3; sb

3:3)
_E

(D b
2; sb

2) : (p ^ q) _ (p ^ r )
! I

(D b
1; sb

1) : p ^ (q _ r ) ! (p ^ q) _ (p ^ r )

where (D b
3:3; sb

3:3) �= (D b
3:2; sb

3:2).
The proof above is justi�ed in a similar way to the Hilb ert-style case.The applica-
tion of inferencerules, which generateeach D i:j , is permitted by the natural deduc-
tion rules. The novelty in this caseis the discharge of assumptions. For example,
note that (D b

3:2; sb
3:2) 2 Pr � (f sb

6:1; sb
5:2g; sb

3:2), (D b
3:3; sb

3:3) 2 Pr � (f sb
6:2; sb

5:4g; sb
3:3).

Therefore,due to the _E rule, f (fg ; sb
3:1); (f sb

5:2g; sb
3:2); (f sb

5:4g; sb
3:3)g ` � sb

2 and then
(D b

2; sb
2) 2 Pr � (f sb

4:1g; sb
2), becausesb

4:1
�= sb

6:1
�= sb

6:2.

Sequent calculus: We assumethe existenceof a logical symbol ) in each sentence.

sc
5:1 : p ) p

W R

(D c
4:1; sc

4:1) : p ) p;q _ r
^L

(D c
3:1; sc

3:1) : p ^ (q _ r ) ) p;q _ r

sc
7:1 : p ) p

W L

(D c
6:1; sc

6:1) : p;q ) p (D c
6:2; sc

7:2)
^R

(D c
5:1; sc

5:2) : p;q ) (p ^ q)
_R

(D c
4:2; sc

4:2) : p;q ) (p ^ q) _ (p ^ r ) (D c
4:3; sc

4:3)
_L

(D c
3:2; sc

3:2) : p;q _ r ) (p ^ q) _ (p ^ r )
CU T

(D c
2; sc

2) : p ^ (q _ r ) ) (p ^ q) _ (p ^ r )
! R

(D c
1; sc

1) :) p ^ (q _ r ) ! (p ^ q) _ (p ^ r )

where (D c
4:3; sc

4:3) �= (D c
4:2; sc

4:2) and (D c
6:2; sc

7:2) �= (D c
6:1; sc

7:1).
Disregardingthe treatment of assumptions,this exampleis similar to the preceding
one. The terminal sentencesin sub-derivations, e.g. s5:1 and s7:1, belongto Ax (�).
Theseare generatedby a standard schema in sequent calculi, p ) p, p 2 G(�).

Figure 2.4: Example of distinct proof calculi styles.
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would be to record the inferencerule justifying each step in a derivation, which
is sometimesuseful when there are many di�erent ways to derive a conclusion
from the sameset of premisesand alsoto provide rigorouscontrol over discharg-
ing of assumptionsin natural deduction like calculi. We prefer to avoid this
additional complexity for the sake of simplicity. Furthermore, it is possibleto
relax the faithfulness condition to introduce new soundnessand completeness
relationshipsasproposedby Avron (1991), this time betweenentailment system
and proof calculus. We considerthe equivalenceabove to be essential because
the entailment and satisfactionrelations of a logic are already related according
to theseconditions. Giunchiglia and Sera�ni (1994) study derivabilit y relations
wherepremisesand conclusionbelongto distinct logical systems.An extension
of our de�nitions towards this direction is clearly subject for further work.

It is alsoimportant to mention that, for a given signature�, ` � doesnot
inherit the properties of the underlying entailment relation. It only captures
particular applications of inferencerules of the proof calculus, for which re
ex-
ivit y, say, would mean that for each premisethere is a rule which allows us to
repeat such a sentencein the subsequent proof step, a requirement which is not
acceptablein general5. Seenasa binary relation, Pr � inherits all the properties
of ` � . By abuseof notation, p 2 Ax(�) is normally written as ` � p. Moreover,
we write 	 ` � p or ` (� ;	) p whenever Pr � (	 ; p) is not empty.

In the remainderof the chapter, we will be interestedin providing presen-
tations for proof calculi of someinteresting logical systems:

De�nition 2.2.7 (Logical System) A logical systemis a 12-tuple (Sig, L , E,
G̀ , ` , Gj= , M od, j=, � , Ax , ` , Pr ) where:

� (Sig, L , E, G̀ , ` , Gj= , M od, j=, � ) is a logic;

� (Sig, L , E, G̀ , ` , Ax , ` , Pr ) is a proof calculus;

A logical system is consideredto be e�ective if provabilit y is decidablefor the
underlying proof calculus, meaning that it is possible to write an algorithm
which decideswhether or not there is a genericproof for each sentence.

An inferencerule 	 ` � P, 	 and P written in terms of schematic variables
and logicalsymbols, is consideredto bederivablein a logicalsystemS if andonly
if for every pair of instances( , p) of (	, P), Pr � ( ; p) is not empty. The same
rule is said to be admissiblein S if and only if j= � p whenever j= �  . These
de�nitions are standard in the literature (Rybakov 1997). Clearly, derivable
rules are admissibleby de�nition. Derived rules make the application of a proof

5But seeFriedman and Sheard(1995) for a \pro of calculus" with such rule.
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Figure 2.5: A taxonomy of logical structures.

calculuseasierin practice while the incorporation of an admissiblerule results
in a more powerful proof theory. We deal with both kinds of rules in the sequel.

At this point, we should remind the readerthat we are not attempting to
proposean original formulation of generallogic. Rather, we have madean e�ort
to establishpractical foundations in order to support a rigorousinvestigation of
many di�erent logical systemswhich are to be introduced. Providing de�nitions
for generallogical structures interconnectedas depicted in Figure 2.5 allows us
to study meta-logicalproperties in a logic independent manner, to determineto
what extent | basedon what assumptions| generalproperties hold and to
transport theseresults elsewherewhenever possibleand necessary.

2.3 Classical Prop ositional Logic

From this sectiononwards, our purposewill be to de�ne a logical systemto sup-
port the designof extensiblesystems.We shall de�ne somedistinct entailment
systemsin terms of their respective Hilbert-style proof calculi and examinehow
they areconnectedto each other and usedin isolation, postponing the de�nition
of the associated model-theoretic notions until the �nal sections,after having
de�ned the whole proof-theoretic structure. We begin by looking at classical
propositional logic. Since this logic is quite well-understood (a comprehensive
study is developed by van Dalen (1994)), we take advantage of this fact to illus-
trate how a proof-theoretic approach leadsus to de�ne an entailment system.



2.3. ClassicalPropositional Logic 31

De�nition 2.3.1 (Classical Prop ositional Logic) The entailment systemof
classical propositional logic, CPL for short, is de�ned as follows:

� SigC P L �= FinSet (i.e., SigC P L is isomorphicto the categoryof �nite sets);

� L C P L def= f: ; ! ; (; )g;

� EC P L �= id Sig C P L . For each � in obj SigC P L , each element of EC P L (�) is
called a proposition symbol;

� For each � in obj SigC P L , GC P L (�) is a set of propositions de�ned by P C P L

as follows, provided that p 2 EC P L (�):

P C P L ::= p j : P C P L j (P C P L ! P C P L )

We shall ignore super
uous parentheses in propositions and adopt the
usual precedenceconventions. We alsousethe following abbreviationsfor
each f p;qg � GC P L (�):

(D1- > ) > def= p ! p;

(D2- ? ) ? def= :> ;

(D3-OR) p _ q def= (: p ! q);

(D4-AND) p ^ q def= : (p ! : q);

(D5-IFF) p $ q def= (p ! q) ^ (q ! p) [or : ((p ! q) ! : (q ! p))];

� For each � in obj SigC P L , the entailment relation ` C P L
� is generatedby the

following proof calculus,provided that f p;q; r g � GC P L (�) 6:

(A1-I) ` C P L
� p ! (q ! p) (weakening);

(A2-I) ` C P L
� (p ! (q ! r )) ! ((p ! q) ! (p ! r )) (distribution);

(A3-N) ` C P L
� (: p ! : q) ! (q ! p);

(R1-MP) f p;p ! qg ` C P L
� q (modus ponensor detachment).

CPL may alsobe seenasa non-conservative extensionof minimal intuitionistic
logic, which is generatedby schemasA1-I , A2-I and rule R1-MP only.

Our (partial) de�nition of CPL is slightly unusual. van Dalen (1994)
usesa unary logical connective ? denoting falsehood, which is admittedly not
essential. Another important distinction is in relation to the propositional proof
calculusadoptedby Hilbert andAckermann(1928),wherean additional uniform
substitution rule is proposed.They mention in that work:

6It is worthwhile recalling that Hilb ert-style calculi do not have inference rules whereby
assumptionscan be discharged. This meansthat � as in De�nition 2.2.6 is empty for R1-MP .
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We may substitute for a sentential variable any sentential combina-
tion provided that the substitution is madewhenever that sentential
variable occurs. (Hilb ert and Ackermann 1928)

Sincewe useschematicvariableslike f p;q; r g � GC P L (�) in our axiomatisation,
substitution would be super
uous here. Our choice also makes replacement by
equivalentsa derivable rule, meaning that it is possible,basedon the axiom
schemasand inferencerules of our proof calculus, to show that an additional
rule replacing formulas by logically equivalent onesdoesnot allow us to derive
more properties than the original axiomatisation. The statement of this rule,
which is often useful in constructing derivations, appearsin Appendix I.

In order to ensurethat the entailment systemabove is really well-de�ned,
it is necessaryto show that it complieswith the genericde�nition provided in
the previous section. We have to prove that propositional signaturesand the
respective morphismsindeeddeterminea category. We develop below the proof
of this straightforward result just asa matter of completeness.In fact, we show
in addition that the category of �nite setshas the desirableproperty of being
�nitely co-complete, which has been identi�ed by Goguenand Burstall (1992)
asa necessarycondition to support speci�cation in the large:

Theorem 2.3.2 (Category of Finite Sets) The collectionsof �nite setsand
set-valuated functions de�ne a categoryFinSet . In addition, FinSet has both
initial elementand pushouts, being in this way �nitely co-complete.

Proof: Given FinSet -morphisms f and g, X
f

! Y and Y
g

! Z , the function
(g � f )(x) def= g(f (x)), x 2 X , is the composition of f and g. Consideringalso a
FinSet -morphismh, Z h! W, the following diagram commutes (so ASS holds):

-� � � � ��*

�
�

�
�

�
�

�
�/

S
S

S
S

S
S

S
Sw

??

HHHHHHY

Y Z
g

hh � g

W

X

h � (g � f )(h � g) � f

f g � f

Moreover, for each X in obj FinSet , there is an X id X! X such that 8x 2 X �
id X (x) = x, the identit y function over X . Given FinSet -morphismsf and g,
Y

f
! X and X

g
! Z , the following diagram commutes (so ID holds):
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�
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f g

id Xid X

id X � f

X

X

Y Z

g � id X

The associative and identit y axiomsobtain, showing that FinSet is a category.
We know that f g belongsto obj FinSet . For every X in obj FinSet ,

there is a FinSet -morphismf , f g
f

! X , such that 8y 2 f g� 9! x 2 X � f (y) = x,
becausethis formula characterising empty functions holds vacuously. Suppose
that there is anotherg in morph FinSet , f g

g
! X and 8y 2 f g�9! x 2 X �g(y) =

x. The extensionalde�nition of function equality says that for each pair A
f ;g
! B ,

f = g if and only if 8x 2 A � f (x) = g(x), but for A = f g this property holds
vacuously. This ensuresthat f = g, which meansthat there is exactly onearrow
from f g to any other set. Thus, f g is the initial object of FinSet .

Assumegiven the FinSet -objects X , Y, Z and the FinSet -morphismsf 0,
g0, X

f 0! Y andX
g0! Z . Construct W in obj FinSet , f 1 andg1 in morph FinSet ,

Y
f 1! W and Z

g1! W, so that:

8x 2 X � (f 1 � f 0)(x) = (g1 � g0)(x) (2.3.1)

8w 2 W � 9y 2 Y � (f 1(y) = w) _ 9z 2 Z � (g1(z) = w) (2.3.2)

The set W = Y � X Z is called the amalgamated sumof Y and Z (after possible
renaming). For each triple P = (W 0; f 2; g2), W 0 in obj FinSet and FinSet -
morphismsf 2, g2 with Y

f 2! W 0and Z
g2! W 0, such that condition (2.3.1)obtains

when f 1 and g1 are substituted by f 2 and g2, there is a h in morph FinSet ,
W h! W 0, such that f 2 = h � f 1 and g2 = h � g1. This function is de�ned as:

h(x) def=

(
f 2(y) if f 1(y) = x
g2(y) if g1(y) = x

Indeed,h is a well-de�ned function, due to condition (2.3.2), which guarantees
that every element of the domain W of h has an image in W 0, and to the fact
that f 2(y) = h(x) = g2(y) whenever f 1(y) = x = g1(y), which ensuresthat the
imageof h is uniquely determined.

If there is another h0 in morph FinSet , W h0

! W 0, obeying the samecondi-
tions, then h0� f 1 = h� f 1 and h0� g1 = h� g1. In other terms, 8y 2 Y �(h0� f 1)(y) =
(h � f 1)(y) and 8z 2 Z � (h0 � g1)(z) = (h � g1)(z). Becauseof the de�nition of
W, 8w 2 W � h0(w) = h(w). Due to extensionality, h0 = h. So, h is the unique
function up to isomorphismmaking the following diagram commute (the inner
diamond is called a pushoutdiagram):
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Using the fact that a categorywith initial element (e.g. f g) and pushouts
(e.g. Y

f 1! W
g1 Z for Y

f 0 X
g0! Z ) has �nite colimits for all �nite dia-

grams(Barr and Wells 1990),we concludethat FinSet is �nitely co-complete.
(FinSet Category)

The importance of the proof above is more pragmatic than theoretical.
Becausethe remainder of the thesis is only concernedwith �nite sets possi-
bly having someadditional structure to serve as signaturesand with structure-
preserving signature morphisms, we can reuse this result to show that each
particular categoryof signaturesis �nitely co-complete.In practice, this means
that herein it will always be possibleto take two signaturesand compute their
composition by identifying the extra-logical symbols they share.

To ensurethat the de�nition of CPL yields a full entailment system, it
remainsto be shown that the designatedproperties of each entailment relation
are supported by the chosenproof calculus. We show that for any f p;q; r g �
GC P L (�) there is a proof which complieswith our axiomatisation and enables
us to obtain such properties for each � in obj Sig. This is veri�ed as follows,
where(1), (2) and (3) refer to the casesin the de�nition of Pr 7:

re
exivit y: From (1) we can infer that (f g; p) 2 Pr � (f pg; p). Moreover, the
genericproof of REFL : p ! p stated in Appendix I allows us to say that

7Together with R1-MP , the following axiomatisation of a linear implicative calculus ex-
tracted from (Gabbay and de Queiroz 1992) exempli�es Hilb ert-style presentations which do
not generatefull entailment systems:

(REFL) p ! p (re
exivit y);

(PERM) (p ! (q ! r )) ! (q ! (p ! r )) (permutation);

(L TRAN) (p ! q) ! (( r ! p) ! (r ! q)) (left-transitivit y);

(R TRAN) (p ! q) ! ((q ! r ) ! (p ! r )) (right-transitivit y).

Namely, if we read ! as � � , it is easy to recognisea fragment of linear logic (Girard 1987),
which lacks monotonicity. By analysing this axiomatisation, we concludethat the usual de�-
nition of derivations in Hilb ert-style calculi, possibly disconnectedlinearly ordered sequences
of steps, is too strong: every entailment relation so de�ned is automatically made re
exiv e
and monotonic. That is why connectednessis required in (3) and the entailments generated
by derivations containing a singleassertionare disregardedby our de�nition. In this way, only
the proposedcalculus can help us to prove the properties required in full entailment systems.
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there exists (D; p ! p) 2 Pr � (f g; p ! p), basedon (2). Applying R1-
MP in (3) usingthe previoussentencesaspremises,weconcludethat there
is a non-empty D 0 such that (D 0; p) 2 Pr � (f pg; p) and, by faithfulness,
that ` C P L is re
exive;

monotonicit y: The de�nition of monotonicity allows us to assumethat (i)
there is (D; p) 2 Pr � (	 1; p), due to the faithfulness condition, and (ii)
	 1 � 	 2. Choosing any q 2 	 2, (1) renders(iii) (f g; q) 2 Pr � (f qg; q).
We also have (f g; p ! (q ! p)) 2 Pr � (f g; p ! (q ! p)), due to the use
of A1-I in (2). Using this fact to support two consecutive applications
of R1-MP in (3), �rst together with (i) and later with (iii), we can infer
that 	 1 [ f qg ` � p due to faithfulness. After iterating this processfor all
the other elements of 	 2 not in 	 1, taking the outcomeof each previous
step as the input, we concludethat ` C P L is monotonic becauseof (ii);

transitivit y: The de�nition of transitivit y allows us to assumethat (i) there
is (D 1

p; p) 2 Pr � (	 1; p) for each p 2 	 2, and (ii) there is d = (D 2
q; q) 2

Pr � (	 1 [ 	 2; q), both due to faithfulness. We show that there is a d0 =
(D 0; q), d 2 Pr � (	 1; q), obtained from d by recursion. If d = (f g; q)
such that q 2 	 2, useA1-I as in the caseof re
exivit y to show that d0 =
(D 1

q; q) 2 Pr � (	 1; q) basedon (i). If d = (f g; q) such that q 2 Ax(�) [ 	 1,
d0 = d. If d = (f (D r ; r ); (D r ! q; r ! q)g; q), apply the sameprocessto D r ,
D r ! q and obtain the following d0 = (f (D 0

r ; r ); (D 0
r ! q; r ! q)g; q):

1. r D r

2. r ! q D r ! q

3. (r ! q) ! ((r ! r ) ! (r ! q)) LTRAN

4. (r ! r ) ! (r ! q) R1-MP 2, 3

5. r ! r REFL

6. r ! q R1-MP 5, 4

7. q R1-MP 1, 6

where REFL and LTRAN are veri�ed basedon the axiomatisation of
CPL. Note that this processis applicable to extensionsof CPL wherein
noneof the above is the case.For any other d = (D 1

q; q), apply the same
processto each d0 2 D 1

q and construct (D 10

q ; q) accordingly. Becausethe
�rst casein the de�nition of Pr � is the only way of introducinghypotheses
in a derivation and we have eliminated all the sentencesof 	 2 from d in
d0, we concludethat d0 2 Pr � (	 1; q). By faithfulness, ` C P L is transitive;
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strong-structuralit y: Assumethat 	 ` � p. For each � �! � 0 in morph Sig,
we prove that, if d = (D; p) 2 Pr � (	 ; p) then d0 = (� (D); � # (p)) j, d 2
Pr � 0(G(� )(	), � # (p)), for � # as in De�nition 2.2.2. Hence,applying the
faithfulness condition twice, we obtain G(� )(	) ` � 0 � # (p), which means
that ` C P L is strongly structural. Assumed given. Due to the minimalit y
of Pr � (	 ; p), d corresponds to oneof the following cases:

� d = (f g; p) andp 2 	. In this case,d0 = (f g; � # (p)), d 2 Pr � 0(G(� )(	),
� # (p)) (i.e., assertionsof assumptionsare translated into similar as-
sertions);

� d = (f g; p) and p 2 Ax(�). The axiomatisation of CPL allows us to
say, providing f s; t; ug � GC P L (�), that � # (p) is either:

1. � # (s) ! (� # (t) ! � # (s)) if p 2 Ax(�) becauseof A1-I ;

2. (� # (s) ! (� # (t) ! � # (u))) ! (( � # (s) ! � # (t)) ! (� # (s) !

� # (u))) if p 2 Ax(�) becauseof A2-I ;

3. (: � # (s) ! : � # (t)) ! (� # (t) ! � # (s)) if p 2 Ax(�) becauseof
A3-N ;

In any case,� # (p) 2 Ax(� 0). So,d0 = (f g; � # (p)), d 2 Pr � 0(G(� )(	),
� # (p)) (i.e., instancesof schemasare translated into axioms);

� d = (D; p) such that D 6= f g. Apply the sameprocessabove to
each di 2 D and obtain � (D). Due to the axiomatisation of CPL,
� (D) must have the form f (D � # (q) ; � # (q)) ; (D � # (q)! � # (p) ; � # (q) !
� # (p))g. By applying R1-MP in (3) we obtain d0def= (� (D); � # (p)) 2
Pr � 0(G(� )(	), � # (p)) (i.e., applications of inferencerules are trans-
lated accordingly).

The veri�cation of the result above wasnot developed in the most econom-
ical way. It wasdevisedassuch not only to spot a setof provabletheoremswhich
ensurethe properties of full entailment systems,but also to shedsomelight on
what requiresattention in developing similar results for other systems.Re
ex-
ivit y, monotonicity and transitivit y do not demand all the axiom schemasof
CPL and are still valid consideringsomeweaker axiomatisations. On the other
hand, if the schemasand rules of CPL are stated basedon the grammar of an
extendedHilbert-style calculus, the properties above do not needto be exam-
ined againbecausetheir veri�cation doesnot dependon the additional structure
of the proof calculus. We adopt this rationale to argue that all the entailment
systemsdescribed in the sequelare re
exive, monotonic and transitive.

The caseof structuralit y is more complex. To prove that CPL is strongly
structural, wehad to examineall the applicationsof inferencerulesand instances
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of axiom schemasshowing that they are translated into similar constructions
basedon the target signature of each morphism. This guarantees that all the
theoremsof each CPL presentation are translated by each morphism into the-
oremsof its target presentation. Even after having veri�ed this result for the
axiomatisation of CPL, we are still obligedto prove the samefor the remaining
schemasand rules of each proof calculus wherein this axiomatisation appears
embedded. To simplify this task, it is enoughto show that no schema or rule
strictly depends on the symbols existing in the underlying signature. To un-
derstand why, note that the only possibledistinction betweenthe theoriesof a
presentation and of its translation along a morphism may appear becausesome
theoremsare generatedby schemasor rulesstated in terms of the set of symbols
in the original signature,which canbe expandedby a morphism. Thus, the cor-
responding theoremsin the theory of the target presentation would not exist.
We shall study a weakly structural entailment systemin the next chapter.

Even though classicalpropositional logic is not highly expressive, the func-
tionalit y of real systemscan already be represented in speci�cations to some
extent. Supposethat CPL is to be applied in the designof a replacement for a
mechanical systempresently in useby a supermarket. The main purposeof the
systemis to prevent trolleys from being stolen. To be allowed to usea trolley,
each customeris required to leave a special purposeidenti�cation card asa de-
posit in a safeso as to releasethe attached trolley immediately. As soon as a
trolley is locked again to the system,the card can be collected.

We adopt here a designdiscipline prescribing the representation of each
object in a problem domain as a separatetheory presentation, following in this
way Fiadeiro and Maibaum (1992). In the supermarket system, it is easy to
identify theseobjects as the locker, the safeand the mechanical devicewhich
obligesthe �rst two objects to behave in a coordinated manner. In Figure 2.6,
each of theseobjects is describedby a speci�cation consistingof a signatureanda
set of propositional axioms. The propositional symbols in each signaturedenote
both the state and the instantaneousevents occurring in the system. Axioms
de�ne how theseentities are related to each other. For instance, accordingto
(4.1), which constrains the occurrenceof an action according to an attribute
value, only when a trolley is currently locked to the systemcan it be released.
Another example is provided by (2.1), saying that the occurrenceof actions
push and pull is mutually exclusive. This separationof signature symbols into
attributes and actionsis regardedin this chapter just assyntactic sugarto make
speci�cations morereadable,meaningthat at this point thesefamiliesof symbols
do not have any distinguishedlogical role.
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Speci�cation Device
actions push; pull
axioms
push ! : pull (2.1)

End

Speci�cation SafeCPL
attributes card in
actions deposit; collect
axioms
collect ! card in (3.1)
deposit ! : collect (3.2)

End

Speci�cation LockerCPL
attributes tr olley in
actions release; lock
axioms
release! tr oley in (4.1)
release! : lock (4.2)

End

Speci�cation SystemCPL
actions use; return
attributes tr olley in; card in
axioms
use! : return (5.1)
use! tr olley in (5.2)
return ! card in (5.3)

End

Figure 2.6: Speci�cation of the supermarket systemin CPL.
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Figure 2.7: Con�guration of the supermarket systemin CPL.
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We use speci�cation morphisms to connect distinct modular theory pre-
sentations and construct in an incremental way descriptionsof complexsystems.
The signature morphismsin Figure 2.7 (b) describe how the speci�cation sym-
bols above are related to each other by way of translation. It is easyto seethere
that the sameset of real events is represented by the pairs of action symbols
in each speci�cation, becausethey are equalisedby the morphismsin the dia-
gram. Indeed, when the trigger of the mechanical deviceis pushed,the trolley
is releasedand the card deposited inside the safe. In e�ect, they correspond to
the samecomplexevent. When the translations above are applied in a compo-
sitional manner to axioms, speci�cation morphismsare induced de�ning a way
of putting the set of speci�cations together to represent the whole system, as
presented in part (a). Axiom (2.1) is translated not only into (3.2) but alsointo
(4.2), justifying the fact that the actions of both LockerCPL and SafeCPL
are mutually exclusive.

Identifying the samesymbol with those of other speci�cations, we ensure
that this symbol will represent a sharedresourcewhenthe speci�cations arecol-
lapsedinto a single object. In our example,all the action symbols of Device ,
pull and push, are associated to the symbols of LockerCPL and SafeCPL ,
becausethe entire deviceis a sharedobject. When we require in addition that

constructions like LockerCPL
� #

1! SystemCPL
� #

2 SafeCPL be co-limits, a
generalisedform of pushout possiblyconnectingseveral objects in a co-conedi-
agram,we do not needto be concernedwith the exact de�nition of the resulting
entities becauseit is provided up to isomorphism. In our example,SystemCPL
is only a representativ e of the classof theory presentations inducedby the con-
nection of LockerCPL and SafeCPL through Device and the given mor-
phisms. Any other object in this classcould be usedin its placeand the same
is true concerningthe morphisms� #

1 and � #
2 . Of course,we are only allowed to

usesuch CPL constructions, and we always do so hereafter, becausewe know
they exist, due to the co-completenessof FinSet .

Sofar, we have concentrated on showing that CPL is a usefulspeci�cation
tool. In the formal design of software systems,we also face the problem of
verifying characteristic properties. For instance,we may want to prove that the
systemdescribed above will allow somecustomeraction only if either a trolley
or a card is currently held by the system. This can be stated as follows:

` SystemCPL use_ return ! tr olley in _ card in (2.3.3)

We usethe structure of SystemCPL and the speci�cation axiomsto verify this
property. We alsorely on helpful theoremsand rules stated in Appendix I:
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Proof:
1. release! tr olley in 4.1 (LockerCPL )
2. use! tr olley in _ card in OR-R � #

1 (1) (SystemCPL )
3. collect ! card in 3.1 (SafeCPL )
4. return ! tr olley in _ card in OR-R � #

2 (3) (SystemCPL )
5. use_ return ! tr olley in _ card in OR-L 2, 4 (SystemCPL )

The application above of induced speci�cation morphismsto translate the con-
sequenceobtained in each proof step is worth noticing. It is in this way that we
can enlargethe languageof LockerCPL and apply the rule OR-R to include
an additional disjunct in the right hand side of the �rst implicative assertion.
The resulting sentence belongs to the theory of SystemCPL . Much in the
sameway, a similar conclusionis obtained from the SafeCPL axiom. If we
considerthat this veri�cation processstarted from (2.3.3), we are also allowed
to say that the proof of that property was decomposedinto a set of proofs of
simpler properties by the proof calculusand the given morphisms. This way of
decomposingproofs was �rst studied by Fiadeiro and Maibaum (1992).

It is interesting to note that the morphismsemployed above in the con-
�guration of the system are all faithful. For instance, because(2.1) belongs
to Device , all the properties involving the symbols in this presentation when
translated by � 1 into LockerCPL canalreadybe derived within Device . This
meansthat the object doesnot have more properties when placed in the com-
plex con�guration. It is useful to leave the possibility of using non-faithful
morphismsopen so that someproperties of speci�ed objects emergeonly when
they are placedin certain con�gurations. There are two ways of supporting this
feature: to use looserspeci�cations (with a weaker set of axioms) or to adopt
a weakly structural entailment system. Both casesshall be exploited in the
remainderof the thesis.

2.4 Prop ositional Linear Time Logic

We discovered in the previoussectionthat classicalpropositional logic is useful
in dealing with the �nite state and the relations between instantaneousevents
of real systems.However, the samelogic turns out to be lessuseful to represent
changeand time dependent behaviour. Essentially , it would benecessaryto code
the passingof time in each CPL theory so that we could rely on this feature.
Unfortunately, CPL as de�ned above is not expressive enoughto permit the
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representation of in�nite 
o ws of time. To overcomethis and other limitations,
temporal logics having additional connectives to deal with the time dimension
may be used. Here we choosean entailment systemwith two temporal connec-
tivesonly: beg, denoting the beginning of time, and V , the strict strong until
connective which is used to express,when we assert pV q, that the property
p occurs strictly in the future (i.e., after the current moment) and q happens
uninterruptedly from the next instant until but not necessarilyincluding the
moment of the p occurrence8.

De�nition 2.4.1 (Prop ositional Linear Time Logic) The entailment sys-
tem of propositional linear time logic, PLT L for short, is de�ned as follows:

� SigP LT L �= SigC P L ;

� L P LT L def= L C P L [ f beg; V g9;

� EP LT L �= id Sig P LT L ;

� For each � in obj SigP LT L , GP LT L (�) is de�ned by P P LT L as follows:

P P LT L ::= P C P L j beg j (P P LT L )V (P P LT L )

Weusethe following abbreviationsfor each f p;qg � GP LT L (�) to introduce
the connectivesnext, the non-strict strong until, eventually in the future,
always in the future and weak until (apart from next, theseconnectives
all rangeover the present moment as well):

(D6-X) X p def= pV ? ;

(D7-U) pU q def= q_ (p ^ qV p);

(D8-F) Fp def= > U p [or p _ pV > ];

(D9-G) Gp def= : F(: p) [or p ^ : (: p)V > ];

(D10-W ) pW q def= Gp _ pU q [or (p ^ : (: p)V > ) _ q_ (p ^ qV p)];

� For each � in obj SigP LT L , the entailment relation ` P LT L
� is generatedby

the proof calculusof CPL together with the following one,provided that
they are both stated over GP LT L (�), wherein p, q, r and s are included:

(A4-GV ) ` P LT L
� G(p ! q) ! (pV r ! qV r );

(A5-GV ) ` P LT L
� G(p ! q) ! (rV p ! rV q);

8pV q � V (p;q) (Gabbay et al. 1994) � qÛ p (Manna and Pnueli 1989).
9We havechosenV to distinguish the strict strong until connectiveproposedby Kamp from

U , the non-strict connective normally found in temporal logics of programs (Pnueli 1977).
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(A6-V ) ` P LT L
� pV q ! pV (q^ pV q);

(A7-V ) ` P LT L
� (p ^ qV p)V p ! qV p;

(A8-V ) ` P LT L
� pV q^ rV s ! (p^ r )V (q^ s)_ (p^ s)V (q^ s)_ (q^ r )V (q^ s);

(A9-V ) ` P LT L
� (p _ q)V r ! pV r _ qV r ;

(A10-G) ` P LT L
� G(p ! X p) ! (p ! Gp);

(A11-X) ` P LT L
� X > ;

(A12-Xb eg) ` P LT L
� : X (beg);

(R2-G) f pg ` P LT L
� Gp;

(R3-b egG) f beg ! Gpg ` P LT L
� p.

Note that, by including above the set of axioms of classicalpropositional logic,
we obtain a proof calculussubstantially di�erent from that proposedby Manna
and Pnueli (1989), where all the propositional validities are acceptedwithout
presentation of formal proof. Our axiomatic presentation appears to be more
appropriate given our additional interest in formal stepwisedevelopment, where
only formal reasoningcan justify software constructionsin full.

The proof calculusabove is obtained from setsof axioms which also con-
sider a strong strict since connective as discussedin (Gabbay et al. 1994) by
removing this past-time connective and including beg instead. SchemasA4 ,
A5 and A9 together with R2 guarantee that we have a normal modal logic,
which can be interpreted over relational structures. A6-7 ensurethe transitiv-
it y of theserelations and we enter in this way the realm of temporal logic. A8
in the presenceof the other axiomsimplies that time is linearly orderedtowards
the future. In particular, due to our choiceof initialised time 
o ws, this is true
everywhere. We also include A10 to capture temporal induction. We useA11
not only to guarantee that the time 
o w does not have endpoints but also to
ensurethat there is always a next instant, capturing discretetime. Axiom A12
says that no instant precedesthe initial one. Rule R2 is the usual temporal
generalisationand R3 may be called begG-elimination.

The readermay want to verify that A1-11 and R1-2 entail all the proposi-
tional theoremsof the logical consequencerelation de�ned by Manna and Pnueli
(1983),which is stated in terms of the setof connectivesde�ned asabbreviations
here. This lengthy proof can be developed basedon the auxiliary theoremsin
Appendix I. We adopt 
o ws of time with �xed characteristicsas in their work
to minimise the possibility of generating inconsistent composedspeci�cations.
This would be the caseif two composedspeci�cations could assumerespectively
discreteand dense
o ws,with and without endpoints, and soon. It is easyto see
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that, adopting the su�cien tly generalclassof initialised discrete 
o ws without
end points, we can still talk about most interesting properties in terms of the
occurrenceof actions. Termination, say, can be satisfactorily represented by the
eventual and everlasting impossibility of action occurrence.

The application of linear time logical systemsin software designhasbeen
streamlinedby the separationof temporal properties into two distinct families
due to Alpern and Schneider (1985) and the respective development of suitable
reasoningprinciples by a number of authors. Livenesspropertiesstating what a
systemeventually performso�er great challengesto veri�cation methods. They
are treated usingthe generalproof rule derived in Section2.7. Safetyproperties,
which de�ne what a systemalways ensures,are veri�ed hereusing the following
derived inferencerule:

Theorem 2.4.2 (Inference Rule IND-b egG) The following inference rule
for any p 2 GP LT L (�) is derivable in PLT L:

(IND-b egG) f beg ! p;G(p ! X p)g ` P LT L
� p (anchored temporal induction).

Proof:
1. beg ! p Ass
2. G(p ! X p) Ass
3. G(p ! X p) ! (p ! Gp) A10-G
4. p ! Gp R1-MP 2, 3
5. beg ! Gp HS 1, 4
6. p R3-b egG 5 (IND-b egG)

whereHS is the hypothetical syllogismrule stated in Appendix I. It is important
to stressthat anchored temporal induction must be captured as a proof rule
since this property cannot be consistently written as an axiom schema in the
presenceof the other usual temporal logic schemas. Kr•oger (1987) recalls that
adopting a similar schema would trivialise the whole logic. Manna and Pnueli
(1989) overcomethis problem as above, considering that beg is de�nable in
terms of past time connectives. In TLA , the Temporal Logic of Actions of
Lamport (1994), an invariancerule is adopted instead sincebeg has no logical
counterpart and each canonicalspeci�cation de�nes an initialisation condition.

Let us return to our supermarket example. We can now increment the
speci�cation of the system using the featuresof temporal logic. Note that all
the previousspeci�cations can be reusedbecauseCPL formulas are allowed in
PLT L. Due to this fact, we present the extendedde�nition of the system in
lessdetail. In order to de�ne that a state p of the systemchanges,sometimes
accordingto the occurrenceof speci�c actions, we usethe following de�nition:

M od(p) def= (p ^ X (: p)) _ (: p ^ X p)
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Speci�cation LockerPL TL
attributes tr olley in
actions release; lock
axioms
beg ! tr oley in (6.1)
release! X (: tr olley in ) (6.2)
lock ! X (tr olley in ) (6.3)
release_ lock _ : M od(tr olley in ) (6.4)

End

Speci�cation SafeLPTL
attributes card in
actions deposit; collect
axioms
beg ! : card in (7.1)
deposit ! X (card in ) (7.2)
collect ! X (: card in ) (7.3)
deposit _ collect _ : M od(card in ) (7.4)

End

Figure 2.8: Speci�cation of the supermarket systemin PLT L.
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Figure 2.9: Con�guration of the supermarket systemin PLT L.

This abbreviation is employed in the axioms of Figure 2.8. We also assume
the existenceof speci�cations Safe and Locker containing only the signature
symbols presented in Section2.3. Theseareusedto de�ne the extendedcon�gu-
ration of the system,which appearsin Figure 2.9. Weonly mention in that �gure
the relevant speci�cations becausethe other onesare de�ned up to isomorphism
by the pushout construction which results in SystemPL TL . In addition, we
postulate that the morphismsremaining to be de�ned are all identities.

The connectivesof temporal logic allow us to make referenceto the passing
of time in each speci�cation. Usingbeg in axiom (6.1), wede�ne that a trolley is
initially attachedto the locker. Conversely, the safeis originally empty according
to (7.1). The e�ect of actionsover the attributes of each entit y arede�ned based
on X , the next time connective. Axiom (6.2) speci�es that a trolley will not be
kept locked to the system in the next instant if it is releasedin the current
moment. Once locked again to the system, (6.3) ensuresthat the trolley will
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be subsequently available. Although this kind of axiom treats action e�ects
with precision, they do not ensurethat the respective attributes will remain
invariant otherwise. This is normally called the frameproblemin the literature,
which becomesoverly complicated in the presenceof concurrency. Becausein
our example each object does not present internal concurrency, their actions
being mutually exclusive, we may adopt a simple solution. Ryan et al. (1991)
proposean axiom requiring that either the actions of each object happen or
elsethe attribute valuesdo not change. This is what (7.4) says: that a card is
either deposited or collectedat each moment or elsethe state of the safeis not
modi�ed. In Chapter 3, we will capture this notion of locality logically.

We have veri�ed that the supermarket systemwill not allow any customer
action unlesssomeobject is held by the system,be it a trolley or a card. It is
also possibleto prove using CPL that this property can be made stronger in
that preciselyoneobject must be held if any action is to take place. Using our
temporal proof calculus and the extendedspeci�cation of the system, we can
now prove that this state condition is never violated. That is, it is always the
casethat either a trolley or a card is connectedto the system:

` SystemPL TL G(tr olley in $ : card in ) (2.4.1)

Simpletemporal reasoningbasedon the theoremsin Appendix I shows that this
property can be decomposedwithin SystemPL TL :
1. G(tr olley in ! : card in ) ^ G(card in ! : tr olley in ) Ass
2. (G(tr olley in ! : card in ) ^ G(card in ! : tr olley in )) $ DIST-ANDG

G((tr olley in ! : card in ) ^ (card in ! : tr olley in ))
3. (G(tr olley in ! : card in ) ^ G(card in ! : tr olley in )) ! IFF-E 2

G((tr olley in ! : card in ) ^ (card in ! : tr olley in ))
4. G(( tr olley in ! : card in ) ^ (card in ! : tr olley in )) R1-MP 1, 3
5. G(tr olley in $ : card in ) D5-IFF 4

Becausethe two conjuncts in (1) are similar, we will only develop the proof of
oneof theseproperties. The other proof can be developed similarly.

At this point we have a good opportunit y to apply our derived inference
rule IND-b egG for anchored temporal induction. This inferencerule allows
us to decomposethe proof of the assumptionabove into the veri�cation of an
initial condition and an invarianceformula of SystemPL TL :

6. beg ! (tr olley in ! : card in ) Ass
7. (tr olley in ! : card in ) ! X (tr olley in ! : card in ) Ass
8. G(( tr olley in ! : card in ) ! X (tr olley in ! : card in )) R2-G 7
9. tr olley in ! : card in IND-b egG 6, 8
10. G(tr olley in ! : card in ) R2-G 9
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The initial condition (6) is proved using classicalreasoning:

11. beg ! tr olley in (6.1)
12. beg ! : card in (7.1)
13. beg ! tr olley in ^ : card in AND-R � 1(11), � 2(12)
14. : card in ! (tr olley in ! : card in ) A1-I
15. (tr olley in ^ : card in ) ! (tr olley in ! : card in ) AND-L 14
16. beg ! (tr olley in ! : card in ) HS 13, 15

where� i def= (� i � � i:i )# , the composition of two morphismsdeterminedup to iso-
morphismby the pushoutconstruction in Figure 2.9. The proof of the invariance
formula (7) requiresadditional temporal reasoning:

17. use! X (tr olley in ! : card in ) Ass
18. return ! X (tr olley in ! : card in ) Ass
19. : M od(tr olley in ) ^ : M od(card in ) ! X (tr olley in ! : card in ) Ass
20. use_ return _ (: M od(tr olley in ) ^ : M od(card in )) ! OR-L 17, 18, 19

X (tr olley in ! : card in )
21. release_ lock _ : M od(tr olley in ) (6.4)
22. deposit _ collect _ : M od(card in ) (7.4)
23. (use_ return _ : M od(tr olley in ))^ AND-I � 1(21), � 2(22)

(use_ return _ : M od(card in ))
24. use_ return _ (: M od(tr olley in ) ^ : M od(card in )) DM , IFF-E , R1-MP 23
25. X (tr olley in ! : card in ) R1-MP 24, 20
26. X (tr olley in ! : card in ) ! A1-I

(( tr olley in ! : card in ) ! X (tr olley in ! : card in ))
27. (tr olley in ! : card in ) ! X (tr olley in ! : card in ) R1-MP 25, 26

In order to completethe veri�cation of property (2.4.1), we prove assump-
tion (17) above as follows:

28. use! X (card in ) (7.2)
29. use! X (: tr olley in ) (6.1)
30. use! X (card in ) ^ X (: tr olley in ) AND-R � 2(28), � 1(29)
31. X (card in ) ^ X (: tr olley in ) ! X (card in ^ : tr olley in ) DIST-ANDX , IFF-E
32. use! X (card in ^ : tr olley in ) HS 30, 31
33. (card in ! : tr olley in ) ! (:: tr olley in ! : card in ) CONP
34. tr olley in ! :: tr olley in DOUB , A3-N , R1-MP
35. (tr olley in ! :: tr olley in ) ! LTRAN

(( :: tr olley in ! : card in ) ! (tr olley in ! : card in ))
36. (:: tr olley in ! : card in ) ! (tr olley in ! : card in ) R1-MP 34, 35
37. (card in ! : tr olley in ) ! (tr olley in ! : card in ) HS 33, 36
38. (card in ^ : tr olley in ) ! (card in ! : tr olley in ) A1-I , AND-L
39. G((card in ^ : tr olley in ) ! (tr olley in ! : card in )) HS 38, 37, R2-G
40. X (card in ^ : tr olley in ) ! X (tr olley in ! : card in ) MON-GX , R1-MP 39
41. use! X (tr olley in ! : card in ) HS 32, 40
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The proof of (18) is developed in the sameway, without stepssimilar to (32-37)
becausewe obtain in this casethe required implication in the right direction.
Assumption(19) is provedby simplealthough tedioustemporal reasoning,which
is omitted here. This concludesthe veri�cation of (2.4.1).

An analogybetweenthe properties of concurrent systemsand (2.4.1) ap-
pearsto be in order here. The components of a real systemare said to be in a
deadlock state if and only if it is impossiblefor each of them to perform compu-
tations becausethe other components have not provided somelocally required
functionality. Since all the components remain waiting for one another, the
whole systemstops. A typical exampleis a circular tra�c jam in which no car
is allowed to proceedbecausevehiclesin perpendicularstreetsblock the passage.
The negation of (2.4.1) is another examplewherein either the empty safewill
always expect a forbidden action from the empty locker and vice versa,or else
both occupied equipment wait forever for their impossibleutilisation. Safety
properties like deadlock freedomassertthat somethingbad never happens. We
have just applied a method which allows us to verify such properties when the
given speci�cations are informative enough.

2.5 Prop ositional Branc hing Time Logic

Even though propositional linear time logicsas studied in the previoussection
are appropriate for describingthe behaviour of someconcurrent systems,these
logics have limitations too. Sistla et al. (1984) and Koymans (1987) proved
many inexpressibility resultsstating that it is impossibleto describe unbounded
messagebu�ers using such logics. As a practical result, we can infer that the
speci�cation and veri�cation of most kinds of concurrent asynchronousmessage
passingsystemswould require a �rst-order temporal logic or similar. We shall
revisit this issuein the sequel.

There is, however, an alternative direction towards increasingthe expres-
sive power of propositional linear time logics that appears to be worthwhile
studying at this point. This study is motivated by practical reasonsrelated to
messagepassingsystemsaswell. In this domain, it is frequent to demandforms
of guaranteeddelivery whereineach dispatched messagemust be received when-
ever it becomespossibleoften enoughfor the recipient to acceptit, a particular
kind of livenessproperty usually called fairness (Gabbay et al. 1980). Such re-
quirements rule out allegedlyunreasonableor unfair behaviours in which some
messagesare always ignored even though the recipient could accept them. Al-
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though we know how to specify that somethingwill happen in the future using
the connective F, we do not know how to expresspossibility using a pure linear
time logic | that there are somebehaviours in which an event indeed occurs
despite the fact that we cannot ensureit is the current behaviour. Assuming
branching 
o ws of time makesthe solution of this problem conceivable.

Two plausible and completely distinct views concerningthe de�nition of
branching time logics are available in the literature (Zanardo 1996). The so-
calledPrioreanview advocatesthat a sentenceassertingthe eventual occurrence
of a proposition is true at a given moment x if and only if the proposition is true
at somemoment in somefuture of x. Conversely, the Ockhamist view argues
that it is meaninglessto discussthe truth valueof a proposition unlessadditional
information is provided about the actual future. To clarify this distinction, a
metaphor can be de�ned. Assumethat a systemand two omniscient observers
are given, Eager and Lazy. Both seethe systemevolving almost as de�ned in
the previoussectionin that each behaviour hasan initial instant, is discreteand
in�nite. Eager,who adopts a Priorean view, politely ignoreseverything elsehe
knows and follows the systemclosely, allowing his own current moment of time
to be always equal to that of the system. According to his perceptions,what
will happen in the future spansasmany branchesof undeterminedpossibilities.
Lazy, on the contrary, adopts an Ockhamist view and prefers to prevent his
time from passing,staying outside of any existing behaviour in the underlying
time frame. He can only seethe distinct behaviours of the systemas a set of
linear terminated sequences.For him, what could have otherwisebeenthe case
at somemoment of a behaviour is de�ned in terms of other possiblebehaviours
of the system. Comparing thesetwo distinct views, we can concludethat what
is regardedas a branching time logic dependson the chosenkind of observer.
Both are reasonableviews that allow us to talk about possibility.

Axiomatisations of Priorean and Ockhamist logics have di�erent virtues.
Priorean logics have beenpreferred in the study of linguistic structures. Some
of theselogics, which are normally de�ned by a reducedset of axiom schemas
and rules, are studied in (Gabbay et al. 1994). Ockhamist logics have been
prevalent in the designof software systemsasshown by the extensive literature
(Emerson1990,Stirling 1992,Zanardo and Carmo 1993). This may be due to
the fact that all the axiom schemasde�ning linear time arestill valid concerning
each behaviour. Priorean logics, on the other hand, do not obey schemaslike
A8-V requiring linearity. Ockhamist branching time demandsin this way an
additional connective E to expresspossibility, the existenceof a potentially
distinct behaviour obeying a given property with a strict past history identical
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to that of the current behaviour. As a result, a larger set of axiom schemasis
required. Here we adopt A , the dual to E, as a logical connective of necessity
and chooseto de�ne our branching time logic as follows:

De�nition 2.5.1 (Prop ositional Branc hing Time Logic) The entailment
system of propositional branching time logic, PBTL for short, is de�ned as
follows:

� SigP B T L �= SigP LT L ;

� L P B T L def= L P LT L [ f A g;

� EP B T L �= id Sig P B T L ;

� For each � in obj SigP P B T L , GP B T L (�) is de�ned by P P B T L as follows:

P P B T L ::= P P LT L j A (P P B T L )

We alsousethe following abbreviation for each p 2 GP B T L (�):

(D11-E) Ep def= : A (: p).

� For each � in obj SigP B T L , the entailment relation ` P B T L
� is generatedby

the proof calculusof PLT L together with the following one,provided that
they are both stated over GP B T L (�), wherein p and q are included:

(A13-A) ` P B T L
� A (p ! q) ! (A p ! A q);

(A14-A) ` P B T L
� A p ! p;

(A15-EA) ` P B T L
� Ep ! AE p;

(A16-EV ) ` P B T L
� (Ep)V q ! E(pV q);

(A17-AXU) ` P B T L
� A (p ! X (qU p)) ! (p ! XA (qU p));

(A18-Eb eg) ` P B T L
� E(beg) ! beg;

(R4-A) f pg ` P B T L
� A p.

This de�nes a full branching time modality, in the sensethat there is no re-
striction on using A in the scope of any other connective. Interesting logics
with a nesting restriction do exist such as the Computation Tree Logic (CTL)
of Emerson (1990). Also note that Lamport (1994), although consideringan
axiomatisation of linear time only, include in his logic an enablednessconnective
En analogousto our E without providing corresponding logical axiom schemas
or inferencerules to support its derivation.
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Axiom schemasA13-15 and rule R4-A for modal generalisationmake of
A an S5 modality, which is determinedhereasusual by an equivalencerelation
on the worlds that occur at the samelevel in the set of legal behaviours. This
reducedset of schemasand rules is distinct from (although equivalent to) the
usual S5 axiomatisation, which is de�ned using another set of schemas(Gold-
blatt 1992; Exercise2.8). Axiom A18 says that the possibility of the current
moment being initial forcesit to be the case,meaning that all behaviours are
at �rst synchronised,i.e., the level of their initial worlds is the same.A16 con-
sidersin addition that a behaviour possessesan alternative in a future moment
only if its subsequent history up to but not including that point could also be
realisedby the alternative behaviour. SchemaA17 extendsthis requirement in
a pointwisemanner by including the current moment in each future history.

Taking into account the precedingset of axiom schemas,we seethat what
makes our branching time logic really di�erent from other formalisms is the
interpretation assignedto E. Here we read a formula Ep as p occurring in
somepossiblebehaviour with an identical past history not necessarilyincluding
the current moment (or world). This meansthat E has a strict interpretation
here. This interpretation easilyyields invalid an axiom schemafor non-strictness
proposedby Stirling (1992): Ep ! p for any atomic p. As an advantage we
obtain that the substitution property still holds, which meansthat it is possible
to substitute formulas by logically equivalent ones in any sentence. This is,
however, a temporary achievement sincewe loosethis property whenconsidering
a �rst-order extension of this branching time logic. Our interpretation also
entails for the samereasonthat the logic above is substantially di�erent from
CTL � (Emerson1990),wherethe sameconnective refersto behaviours with an
identical past history necessarilyincluding the current world. For atomic p,

Ep ^ : p ! X p (2.5.1)

hasa contradictory antecedent in CTL � whereasthis neednot be the casehere.
We do not know how to expressin CTL � this property that p happensat most
each other moment in any behaviour. On the other hand,consideringa de�nition
of that logic in terms of our syntax10, the theoriesof CTL � are interpreted into
PBTL by a functor B : Th C T L �

! Th P B T L mapping signaturesas the identit y
and each p 2 Th� (	), � in obj SigC T L �

and 	 � G(�), into beg ! B� (p)
belongingto B(Th� (	)), whereB� is de�ned as follows:

10Note that beg doesnot have a syntactic counterpart in CTL � .
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Figure 2.10: Interpretation of branching modality in (a) PBTL and (b) CTL � .

B� (p) def= p; for p 2 EC T L � (�)
B� (: p) def= :B � (p)
B� (p ! q) def= B� (p) ! B� (q)
B� (pV q) def= (B� (p))V (B� (q))
B� (A p) def= p; for p 2 EC T L � (�)
B� (A (pV q)) def= XA ((B� (q))U (B� (p)))
B� (A p) def= A (B� (p)) ; for any other p

and each theory morphism  : Th� 1 (	 1) ! Th� 2 (	 2) in morph Th C T L �
into

B( ) : fB (p)jp 2 Th� 1 (	 1)g ! fB (p0)jp0 2 Th� 2 (	 2)g. Zanardo (1996) also
studiesmany similar temporal logics.

Branching time logics are regardedas particular many dimensional for-
malisms by Gabbay et al. (1994). Essentially , new dimensionsrequire addi-
tional arguments in interpreting each formula. We use trees as a conceptual
abstraction of parallel behaviours in Figure 2.10 to clarify this interpretation.
We indicate therein points of referencefor interpretation using (� ) and setsof
possibleevaluation points of a formula are circumscribed by dashedboxes. In
CTL � , evaluation and referencepoints coincide as shown in Figure 2.10 (b).
This is not, however, the requirement in our case.Hence,any behaviour passing
through (� ) in Figure 2.10(a) makesa formula EG p true becausethere is some
future history following that past moment satisfying Gp.

It is customary to imposeadditional restrictions on the 
o ws of time in
bidimensionallogicsasa meansof capturing the behaviour of computerprograms
in a more realistic manner (Emerson1983). Such restrictions are:

Pre�x closure: Pre�xing transitions to a behaviour resultsin a valid behaviour;

Su�x closure: Every su�x of a behaviour is itself a valid behaviour;
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Fusion closure: Joining the past and the future of distinct behaviours at a
sharedmoment always results in another valid behaviour;

Limit closure: If a behaviour can be followed for an arbitrarily long but �nite
length of time, it can be followed for an in�nite length of time.

Su�x closureis invalid here sincewe adopt initialised behaviours and the pro-
cessof taking out their initial segments doesnot guarantee that the remaining
histories have acceptableinitial moments, as identi�ed by Manna and Pnueli
(1989). Pre�x closureis also invalid since�nite behaviours are not admissible.
Fusionclosureis not supported aswell becausewe canwrite, basedon the initial
moment, sentencesthat can distinguish two future histories sharing somemo-
ment, although Stirling (1992)mentions that this property may be captured by
AX p ! XA p and this schemais derivable from A16 . Finally, wedo not assume
limit closurebecausedoing sowould prevent us from treating important notions
of fairness. In fact, Emerson(1983) recognisesthat theseassumptionsdo not
always make sense,specially in representing real life objects or computational
processeswhich have a de�nite notion of state. All the axiom schemasabove
are solely derived from the interpretation given to our branching modality.

Onceagain, the supermarket examplecan be usedto illustrate the appli-
cation of our logical system. Taking asa starting point the speci�cations of last
section,let us assumethat each component canprovide somevisual information
on its current state. The locker, for instance, is able to signal that the trolley
has been removed. The additional action symbols representing the display of
visual information are introducedin Figure 2.12. Suppose,moreover, that, due
to physical limitations, it is still impossiblefor each of theseobjects to allow the
occurrenceof more than one action at each time. We capture this constraint
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Speci�cation LockerPBTL
attributes tr olley in
actions release; lock; show out
axioms
release_ lock ! : show out (8.1)
show out ! : tr olley in (8.2)
: tr olley in ! E(show out) (8.3)
: lock ^ E(show out) ! J ust(show out) (8.4)

End

Speci�cation SafePBTL
attributes card in
actions deposit; collect; show in
axioms
deposit _ collect ! : show in (9.1)
show in ! card in (9.2)
card in ! E(show in) (9.3)
: collect ^ E(show in) ! J ust(show in) (9.4)

End

Figure 2.12: Speci�cation of the supermarket systemin PBTL.

through axioms(8.1) and (9.1). This meansthat a safeconnectedto the system
asshown in Figure 2.13is prevented from allowing show out to happenwhenever
lock or releaseoccur, which are in turn mutually exclusive actions becauseof
(2.1). Sincewe do not want to precludecustomersfrom performing any action,
we cannot require that state information be displayed due to this disjointedness
constraint. Instead, we adopt axioms (8.3) and (9.3) stating that information
may be presented whenever each object is in use. Theseareso-calledwil lingness
properties(Barreiro et al. 1995),which say that each object is willing to perform
an action although its occurrenceis not guaranteed.

Willingness properties alone are too weak to force the occurrenceof any
action. In our example,although endowedwith enoughstructure to display their
busystate, theremay bebehaviours in which both safeand locker arebeingused,
but never present such information. Then, the additional structure we have just
de�ned would be useless.To increasethe e�ectivenessof the system, we can
enforcesomeweak fairnessconditions, de�ned using the following abbreviation:

Just(p) def= F(p _ A (: p))

Axiom (8.4) speci�es that whenever it is possiblefor the locker to display some
information and the trolley is not being returned, its state will be presented in
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Figure 2.13: Con�guration of the supermarket systemin PBTL.

the future (which possibly includesthe current instant) or elsethis will become
momentarily impossiblefor the locker. Becauseof (8.3), we caninfer that in this
last situation the trolley would have to be back again. On the other hand, for
the trolley remaining in useinde�nitely , the locker would eventually be obliged
to present someinformation. Summarisingtheseinformal observations, we can
now ensurethat the display would work eventually whenever allowed to do so
by the actions of supermarket customers(or possibly thieves).

Fairnessaxioms allow us to de�ne in a modularised way how each object
constrainsthe environment. A supermarket could not prevent information from
being displayed, perhapsimposingadditional conditions over the occurrenceof
show in, while employing the locker and safeabove. This would contradict our
fairnessaxioms. We may, on the other hand, try to describe a perfect system,
which would display state information whenever it had the opportunit y. The
following formula concerningthe safewould be valid in this case:

: collect^ E(show in) ! show in (2.5.2)

Unfortunately, although a speci�cation with formula (2.5.2) substituting (9.4)
would not be inconsistent, the sequential perfect safespeci�ed asa result would
not have a display realisableas computer program: the decisionas to whether
or not to present someinformation would have to consumeno time.

2.6 Classical First-Order Logic

Unlessaugmented with additional logical connectives to capture the peculiar
characteristicsof speci�c domains,an examplebeing the temporal connectives
de�ned in the previoussectionsto dealwith time, propositional logicsareunable



2.6. ClassicalFirst-Order Logic 55

to expressin full generality the propertiesof individual objects in the context of
their collections. For instance, in our previous exampleconsideringthe super-
market system,it would be impossibleto require from each customerto return
the samereleasedtrolley becausethere were no logical meansto say that any
other trolley would not be acceptable. Much the sameoccurs with deposited
identi�cation cards. Another more problematic examplerelated to computing
is obtained by consideringconcurrent messagepassingsystems,which cannot
be faithfully speci�ed within the realm of propositional logicsbecauseeach ex-
changedmessageneedsto be tagged in an unique way to ensureit will not be
replicated. If we assumethat time doesnot have end points and seethat many
messagesmay be dispatched at each instant, it is easyto concludethat the set
of tags needsto be in�nite. But we cannot talk about the in�nitary character
of somedomain with �nite proposition symbols and �nitary connectivesonly.

Indeed, the weaknessof propositional logical systemsappearsto lie in the
absenceof linguistic meansto pick a denotation of an object in each domain of
discourseand relate it to the denotation of any other object therein. This justi-
�es a shift to �rst-order formalisms,which, through the useof logical variables
and quanti�ers, allow us to deal with theseissues.Ignoring for a while the time
dimension, we de�ne below what we understand by classical �rst-or der logic.
Onceagain,we facethe de�nition of a well-establishedlogic, already studied by
a number of authors such as van Dalen (1994). We take advantage of this fact
to introduce in what follows most of the notation to be usedin the remainder
of the thesis.

De�nition 2.6.1 (First-Order Logic) The entailment systemof classical �rst-
order logic, F OL for short, is de�ned as follows:

� SigF O L �= FinSet � FinSet such that there exist:

1. Pred;F unct : SigF O L ! FinSet , forgetful functors assigningsigna-
tures to disjoint setsof predicate and function symbols, respectively;

2. Type, a map assigningeach � in obj SigF O L to a similarity type
(arity P r ed

� ; ar ity F unct
� ), each arity itself a function with domarity P r ed

�
def= Pred(�), dom arity F unct

�
def= F unct(�) and cod arity P r ed

�
def=

cod arity F unct
�

def= N . We usually drop the indexesfrom each arity ;

� L F O L def= L C P L [ f8 ; �g [ VF O L (a set of variables), such that jV F O L j def= @0;

� For each � in obj SigF O L , EF O L (�) def= Pred(�) [ F unct(�);
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� For each � in obj SigF O L , Term(�), Atom(�) and GF O L (�) are respec-
tively setsof terms, atomic formulas and formulas de�ned by T F O L , AF O L

andF F O L asfollows,provided that x 2 VF O L , f 2 F unct(�) with arity (f ) =
m and a 2 Pred(�) with arity (a) = n:

T F O L ::= x j f (T F O L
1 ; : : : ; T F O L

m )
AF O L ::= a(T F O L

1 ; : : : ; T F O L
n )

F F O L ::= AF O L j : F F O L j F F O L ! F F O L j (F F O L ) j 8x � F F O L

We alsode�ne a functor Expr : SigF O L ! Set associating � in obj SigF O L

to a set of expressionsExpr (�) def= GF O L (�) [ Term(�) [ EF O L (�).

F OL is equipped with a map F ree which assignseach � in obj Sig to
a free variable function F ree� : Expr (�) ! P (VF O L ). For x 2 VF O L ,
t i 2 Term(�) and f p;pi g � Expr (�), F ree(p) is de�ned as follows:

F ree(x) def= f xg
F ree(f (t1; : : : ; tn )) def=

S
f F ree(t i )j1 � i � ng;

for f 2 F unct(�) and arity (f ) = n
F ree(a(t1; : : : ; tn )) def=

S
f F ree(t i )j1 � i � ng;

for a 2 Pred(�) and arity (a) = n
F ree(: p) def= F ree(p)
F ree(p1 ! p2) def= F ree(p1) [ F ree(p2)
F ree(8x � p) def= F ree(p) � f xg
F ree(p) def= f g;

for any other p 2 Expr (�)

To stressthat f x; yg � F ree(p) must be the case,we write p[x; y].

F OL is also equipped with a map [�] associating each � in obj SigF O L to
a substitution function [�]� : GF O L (�) � VF O L � Term(�) ! GF O L (�). For
any f t i ; r g � Term(�), q 2 VF O L and p 2 GF O L (�), p[qnr ] denoting the
substitution of q by r in p is de�ned as follows:

q[qnr ] def= q
f (t1; : : : ; tn )[qnr ] def= f (t1[qnr ]; : : : ; tn [qnr ]);

for f 2 F unct(�) and arity (f ) = n
a(t1; : : : ; tn )[qnr ] def= a(t1[qnr ]; : : : ; tn [qnr ]);

for a 2 Pred(�) and arity (a) = n
(: p1)[qnr ] def= : p1[qnr ]
(p1 ! p2)[qnr ] def= p1[qnr ] ! p2[qnr ]
(8x � p1)[qnr ] def= 8x � (p1[qnr ]);

for x 2 VF O L � F ree(r )
p[qnr ] def= p;

for any other p, q and r :
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wherep is the underlined expressionin each caseabove.

We say that r is free for q in p if and only if each occurrenceof q in p
doesnot appear in the scope of a quanti�er which binds someof the free
variablesof q in commonwith r . We only considera substitution p[qnr ]
to be admissibleif r is free for q in p. We also assumethe existenceof a
substitution relation f�g associated to [�] which performs just someof the
speci�ed substitutions.

The following abbreviation is usedfor each p 2 GF O L (�) and x 2 VF O L :

(D12- 9) 9x � p def= :8 x � : p.

� For each � in obj SigF O L , the entailment relation ` F O L
� is generatedby the

proof calculusof CPL together with the following one,provided that they
areboth stated over GF O L (�), whereinp and q are included, that x 2 VF O L

with x 62F ree(p) and that t 2 Term(�) is free for x in p:

(A19- 8) ` F O L
� (8x � p[x]) ! p[xnt];

(A20- 8) ` F O L
� 8x � (p ! q) ! (p ! 8x � q);

(R5- 8) f p ! qg ` F O L
� p ! 8x � q.

The de�nition of �rst-order logic is moreelaborated than the propositional case.
The category of signatures is endowed with linguistic structure to represent
genericproperties of elements using predicate symbols and functional relation-
ships betweenthem through function symbols. Theseelements are denotedby
arguments in applying such symbols aswell asthe result in the caseof functions.
This is why �rst-order logic symbols are assignedto an arity, to de�ne the num-
ber of elements involved in thesesituations. The logical languagealso contains
a countably in�nite set of variables and a quanti�er symbol which allow us to
expressproperties in genericform. Thesenotions are standard.

What is unusual in our de�nition above is the use of a relation instead
of a function to deal with substitution. We shall seein what follows that this
additional generality is required in stating the properties of logical equality. A
similar notion of parallel substitution is proposed by van Dalen (1994), who
considersonly substitutions of terms for variables within formulas but allows
many of them to be e�ected in parallel producing non-deterministic results,
which do not necessarilydenotea single formula.

F OL is a faithful extension of CPL. Indeed, all the additional axiom
schemasand rule above have only to do with the newly introduced quanti�er.
A19 says that properties of particular elements follow from the general case
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covering all the elements of the domain. Moreover, A20 says that if a generic
property guarantees for each element of the domain another property, so does
it guarantee that the whole domain enjoys the same. R5 is the universal gen-
eralisation rule. To seethat this is a faithful extensionof CPL, �rst note that
there is a functor F : SigC P L ! SigF O L such that, for each � in obj SigC P L ,
F unct(F (�)) is empty and each p 2 EC P L (�) is isomorphically mapped into
F (p) 2 Pred(F (�)) with arity (F (p)) = 0, and that also maps propositional
morphismsaccordingly. Compositional application to the symbols in each ex-
pressionlifts F to another functor betweenthe respective categoriesof theories.
Each theory Th� (	) in obj Th C P L is interpreted into �rst-order logic because
none of the theoremsin Th� (	) is lost in the translation. This interpretation
is also faithful because,when we restrict the languageof a �rst-order theory to
the co-domainof F , it is necessarilythe imageof a theory in CPL. Note that
CPL is faithfully embedded into PLT L, which in turn is similarly embedded
into PBTL, but in thosecasesthe embedding functors are trivial.

Applying the precedingfunctor to the theoriesspeci�ed in Section2.3, we
obtain a set of examplesof �rst-order theories. In examplesrequiring the full
expressivenessof the logic, we assumethat freevariablesin axiomsare implicitly
universally quanti�ed. In practice, however, F OL doesnot seemto be adequate
to support the design of extensible systems. We need equality to deal with
identit y and the temporal connectives to recover direct accessto time without
resorting to any form of coding. Becauseof thesereasons,we shall postponethe
presentation of additional examplesto Chapter 3.

2.6.1 Man y-Sorted Logic with Equalit y

The exampleswe have provided point to the fact that the real world can be
organisedin collectionsof similar objects. Identi�cation card numbers,message
tags and others are instancesof this idea. To be e�ective, this classi�cation of
the universein domainsrequiresadditional support for de�ning similarity and
sameness.These can be treated within a logic where the notions of sort and
equality are madea logical part of the formalism, as de�ned below:

De�nition 2.6.2 (Man y Sorted First-Order Logic) The entailment system
of many sorted �rst-or der logic with equality, M SF OL, is de�ned as follows:

� SigM S F O L �= SigF O L � FinSet such that there exist:

1. Pred and F unct asde�ned in F OL, and Sort : SigM S F O L ! FinSet
assigningeach signature to a set of sort symbols disjoint from those
of predicatesand functions;
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2. Type, a map assigningeach � in obj SigM S F O L to a type signature
(typeP r ed

� ; typeF unct
� ), each type itself a function with dom typeP r ed

�
def= Pred(�), dom typeF unct

�
def= F unct(�) and cod typeP r ed

�
def=

Sort(�) �
f in , cod typeF unct

�
def= Sort(�) �

f in ! Sort(�). We usually
drop the indexesfrom each typeandput arity (p) def= len(domtype(p));

� L M S F O L �= L F O L [ f = g such that there is a functor Class : SigM S F O L !
Set

�
! assigningeach � in obj SigM S F O L to a partial classi�cation func-

tion Class(�) : VM S F O L ! Sort(�). For s 2 Sort(�), VM S F O L
� s

def=
f x 2 VM S F O L jClass(�)( x) = sg, the set of s-classi�ed variables;

� For each � in obj SigM S F O L , EM S F O L (�) def= Pred(�) [ F unct(�);

� For each � in obj SigM S F O L and s 2 Sort(�), we write as Term(�) s the
set of s-classi�ed terms de�ned as follows:

f t 2 Term(�) jt 2 VM S F O L
� s

_ cod type(t) = sg

Moreover, Atom(�) is rede�ned as follows:

AM S F O L ::= AF O L j T F O L
s = T F O L

s

The following conditions are respectively added to the de�nition of F ree
and [�] for F OL, providing f t1; t2g � Term(�) s for somes 2 Sort(�):

F ree(t1 = t2) def= F ree(t1) [ F ree(t2)
(t1 = t2)[qnr ] def= t1[qnr ] = t2[qnr ]

We alsousethe following abbreviations:

(D13-NEQ) t1 6= t2 def= : (t1 = t2);

(D14-UNI) 9! x � p[x] def= 9x � (p[x] ^ 8y � p[y] ! x = y).

� For each � in obj SigM S F O L , the entailment relation ` M S F O L
� is generated

by the proof calculus of F OL together with the following one, provided
that they are both stated over GM S F O L (�), that f t; t1; t2g � Term(�) s for
somes 2 Sort(�), that p 2 Atom(�) and that q 2 Expr (�):

(A21-EQ) ` M S F O L
� t = t;

(A22-EQ) ` M S F O L
� t1 = t2 ! (pf qnt1g ! pf qnt2g).
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That is, the similarity type of �rst-order signatures is extended with typing
information basedon sets of extra-logical sort symbols. Terms and variables
are classi�ed accordingly. Equality is included as a logical symbol, for which
the axiomatisation above is standard. The only exceptionis perhapsthe useof
the substitution relation in A22 to allow the proof of theoremslike x = y !
(a(x; y) ! a(y; x)), a 2 Pred(�), f x; yg � VM S F O L , which are not provable con-
sidering an axiomatisation basedon the usual substitution function. Sernadas
et al. (1995) adopts the samenotion. Together with A21 , which assertsthat
equality is re
exive, the other characteristic properties of equivalencerelations,
symmetry and transitivit y, are provable as stated in Appendix I.

It is easyto seethat F OL canbe faithfully embeddedinto M SF OL. More
interestingly, we can alsoobtain a similar embedding in the opposite direction.
De�ne a functor M : SigM S F O L ! SigF O L such that, for each signature � in
obj SigM S F O L , each symbol p 2 EM S F O L (�) [ VM S F O L [ f = g is isomorphically
mapped into an imagein EF O L (M (�)) with the samearity. So:

� x 2 VM S F O L ) M (x) 2 VF O L ;

� f 2 F unct(�) ) M (f ) 2 F unct(M (�)) ^ arity (M (f )) = arity (f );

� a 2 Pred(�) ) M (a) 2 Pred(M (�)) ^ arity (M (a)) = arity (a);

� s 2 Sort(�) ) M (s) 2 Pred(M (�)) ^ arity (M (s)) = 1;

� M (=) 2 Pred(M (�)) ^ arity (M (=)) = 2.

M lifts to a functor between the respective categoriesof theories by compo-
sitional application to M SF OL expressionsobeying what follows, provided
f p;qg � GM S F O L (�), f t1; t2g � Term(�) s for s 2 Sort(�) and x 2 VM S F O L :

M (t1 = t2) def= M (=)( M (t1); M (t2))
M (: p) def= :M (p)
M (p ! q) def= M (p) ! M (q)
M (8x � p) def= 8M (x) � M (Class(�)( x))( M (x)) ! M (p)

To seethat this is also a faithful embedding, supposethat the restriction of a
�rst-order theory to the languageof the codomain of M contains a sentence
which is not in the imageof any M SF OL theory. This is a contradiction since
we know that any such F OL theory can be faithfully embeddedinto M SF OL.
The existenceof both faithful embeddingsmeansthat theselogics are equally
expressive. So,what is the reasonfor introducing many-sorted logic with equal-
it y?
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Sorts are a widely recognisedway of making sentencesmore readable(van
Dalen 1994). The justi�cation of logical equality is more subtle and has to do
with A22 and alternative schemas. Assumeour interest in specifying a prob-
lem involving an identit y relation and at least onebinary predicatesymbol. To
represent the characteristic properties of the relation is easyboth in F OL and
M SF OL: in the �rst casethey canbe captured through three universally quan-
ti�ed axioms and nothing is neededin the secondcaseby adopting the logical
equality. On the other hand, to capture the substitution instancesgeneratedby
the identit y may bemoredemanding.Again, this is no di�cult y for many-sorted
logic with equality asbeing supported by the aforementioned schema. However,
in the caseof F OL we would need to include in�nitely many axioms in the
speci�cation. This is due to the impossibility of relying on equivalent terms to
make substitutions (recall that replacement rules are derivable in both logical
systemsbut they demandlogically equivalent formulas aspremises).Therefore,
the problem is �nitely axiomatizablein M SF OL but not in F OL, meaningthat
it cannot be represented by a speci�cation in the senseadopted here. For the
sake of generality, we prefer the former logic.

It appearsto be important to mention that the logic above, as an exten-
sion of unsorted classical�rst-order logic, doesnot su�er from the pathological
anomalyof the similar extensionbasedon equationallogic, namelythe unsound-
ednessof the extensionidenti�ed by Goguenand Meseguer(1981). The anomaly
appears in many-sorted equational logic becausesort symbols denoting empty
setsareallowed. It is easyto seethat this is not the casein classicalmany-sorted
logic as a consequenceof the following theorem:

Theorem 2.6.3 (T otal terms) Given a signature � in obj SigM S F O L , the ax-
iom schemabelow for any t 2 Term(�) is provable in M SF OL:

(NV OID) ` M S F O L
� 9y � t = y (terms do not havea partial interpretation).

Proof:
1. t = t A21-EQ
2. ::: (t = t) ! : (t = t) DOUB
3. (::: (t = t) ! : (t = t)) ! (t = t ! :: (t = t)) A3-N
4. t = t ! :: (t = t) R1-MP 2, 3
5. :: (t = t) R1-MP 1, 4
6. 8y � : (t = y) ! : (t = t) A19- 8
7. (8y � : (t = y) ! : (t = t)) ! (:: (t = t) ! :8 y � : (t = y)) CONP
8. :: (t = t) ! :8 y � : (t = y) R1-MP 6, 7
9. :8 y � : (t = y) R1-MP 5, 8
10. 9y � t = y D12- 9 9 (NV OID)
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2.7 First-Order Temp oral Logic

We have �nally reached a point whereit is possibleto introducea really expres-
sive �rst-order temporal logical system to support software speci�cation and
veri�cation. To assessthe power of such a formalism in practice, it su�ces to
mention that it cansupport the representation of concurrent object systemswith
a variety of value-passingmodesof interaction. It would appear straightforward
to combine PBTL and M SF OL in a way which de�nes how the temporal con-
nectives interact with the �rst-order quanti�ers. However, such a combination
presupposesmany delicate decisions.We chooseto de�ne our �rst-order linear
time entailment systemas follows:

De�nition 2.7.1 (Man y-Sorted Linear Time Logic) The entailment sys-
tem of many-sorted linear time logic, M SLT L, is de�ned as follows:

� SigM S LT L �= SigM S F O L � FinSet such that there exist:

1. Pred, F unct and Sort asin M SF OL, with PredrenamedasAct (for
action symbols), and there is an additional forgetful functor Attr :
SigM S LT L ! FinSet which assignseach � in obj SigM S LT L to a set of
attribute symbols, disjoint from thoseof actions, functions and sorts;

2. Type as in M SF OL, assigningeach � in obj SigM S LT L to a type sig-
nature with a new component typeAttr

� with domtypeAttr
�

def= Attr (�)
and cod typeAttr

�
def= Sort(�) �

f in ! Sort(�);

� L M S LT L �= L M S F O L [ L P LT L ;

� For each � in obj SigM S LT L , EM S LT L (�) def= Act(�) [ F unct(�) [ Attr (�);

� For each � in obj SigM S LT L , Term(�) s for s 2 Sort(�) and GM S LT L (�)
are (re)de�ned by T M S LT L

s and F M S LT L as follows, providing x 2 VM S LT L
� s

,
f 2 F unct(�) with type(f ) = hs1; : : : ; sm i ! s and g 2 Attr (�) with
type(g) = hs1; : : : ; sn i ! s:

TM S LT L
s ::= x j f (TM S LT L

s1
; : : : ; TM S LT L

sm
) j g(TM S LT L

s1
; : : : ; TM S LT L

sn
)

F M S LT L ::= F M S F O L j beg j (F M S LT L )V (F M S LT L )
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The following casesareaddedto the de�nition of F reeand [�] respectively:

F ree(g(t1; : : : ; tn )) def=
S

f F ree(t i )j1 � i � ng ;
for g 2 F unct(�) and arity (g) = n

F ree(p1V p2) def= F ree(p1) [ F ree(p2)

g(t1; : : : ; tn )[qnr ] def= g(t1[qnr ]; : : : ; tn [qnr ])
for g 2 Attr (�) and arity (g) = n

(p1V p2)[qnr ] def= (p1[qnr ])V (p2[qnr ])

� For each � in obj SigM S LT L , the entailment relation ` M S LT L
� is generated

by the proof calculi of M SF OL, PLT L and the following one, provided
that they are all stated over GM S LT L (�), wherein p and q are included,
that x 2 VM S LT L with x 62F ree(q) and f t1; t2g � Term(�) s for some
s 2 Sort(�) are such that no attribute symbol appearsin t i , 1 � i � 2:

(A23- 9V ) ` M S LT L
� (9x � p)V q ! 9x � pV q;

(A24-EQG) ` M S LT L
� t1 = t2 ! G(t1 = t2);

(A25-NEQG) ` M S LT L
� t1 6= t2 ! G(t1 6= t2).

We consider that, while some of the symbols in each signature remain with
the samerigid interpretation adopted in classical�rst-order logic, someothers
acquirea 
exible, temporalisedmeaning. Sort and function symbols always have
the samedenotation regardlessof the moment or the behaviour in which they
are evaluated. Predicates, on the other hand, now called actions, are to be
understood as representing the occurrenceof instantaneousevents. Note that
the extra-logical, immediate character of actions herein di�ers fundamentally
from that of TLA (Lamport 1994),whereactions are abbreviational de�nitions
of transitional formulas. We also include in each signature an additional set of

exible function symbols, attributes, to represent instantaneousstate. Families
of state symbols with slightly distinct de�nitions appear in the literature as
rigid constants (Andr�eka et al. 1995), attribute symbols with empty domain,
and global variables (Manna and Pnueli 1983, Lamport 1994), symbols as in
VM S LT L with a temporalisedinterpretation.

Taking into account the possibility of having variables,sort, function and
predicatesymbols with rigid or 
exible interpretation (note that in our casewe
have families of function symbols in both categories)or even absent in a logic,
and consideringmoreover that it may be reasonableto prevent quanti�cation
over somefamiliesof variables,it is not too di�cult to concludethat the number
of conceivable logicsobtained by combination of thesecasesis higher than 250.
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Most of theseare almost identical or uninteresting. In someother casessuch
as for 
exible sorts the axiomatisation of the corresponding interpretations be-
comesoverly complicated for practical application. Apart from the formalisms
already proposedin the literature aiming at the designof concurrent systems,
it may be worthwhile investigating a logic formulated with rigid and 
exible
predicatesaswell as functions, with the purposeof capturing in a more natural
way with the additional rigid symbols the persistent schemasand static integrity
constraints usually found in databasesystemapplications. We shall not explore
this alternative formulation any further here.

The languageof M SLT L is such that terms, atoms and formulas are con-
strued almost asin M SF OL. In particular, we do not adopt X t asa term in the
way proposedby Manna and Pnueli (1983)and later generalisedby Fiadeiro and
Sernadas(1990)sinceit is not clear if the expressive power of the logic increases
at all. The proposedaxiom schemascapture the choicesdescribed above. A23
is a Barcan formula saying that quanti�cation domains do not vary with the
passingof time. It is due to Mark Reynoldsin this form, which entails the more
conventional 8x � G(p) ! G(8x � p). Note its similarity with A16 , although in
that casethe converseis not valid. A24-5 say that terms which do not include
attribute symbols are rigid. Becauseof the sidecondition in theseschemas,we
loosethe substitutivit y property which would allow us to substitute sentencesby
logically equivalent onesin any context. Although we have already introduced
linguistic support to write frame axioms,which may require, for instance,that
only the actions of an object change the value of its attributes, we postpone
their de�nition until Chapter 3 wherewe shall study an object-basedapproach
to extensiblesystemsdesign.

The formalisation of the choicesabove concerning the interpretation of
signature symbols can be carried forward in an analogousway to branching
time as de�ned below:

De�nition 2.7.2 (Man y-sorted Branc hing Time Logic) The entailment
systemof many-sorted branching time logic, M SBTL, is de�ned as follows:

� SigM S B T L �= SigM S LT L ;

� L M S B T L �= L M S LT L [ L P B T L ;

� EM S B T L �= EM S LT L ;

� For each � in obj SigM S B T L , GM S B T L (�) is de�ned by F M S B T L as follows:

F M S B T L ::= F M S LT L j A (F M S B T L )
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The following conditions are added to the de�nition of F ree and [�], re-
spectively, providing p 2 GM S LT L (�):

F ree(A p) def= F ree(p)
(A p1)[qnr ] def= A (p1[qnr ])

� For each � in obj SigM S B T L , the entailment relation ` M S B T L
� is generatedby

the proof calculus of M SLT L together with the following one, provided
that they are both stated over GB T M S L (�), wherein p is included, that
x 2 VM S B T L and f t1; t2g � Term(�) s for somes 2 Sort(�) are such that
no attribute symbol appearsin t i , 1 � i � 2:

(A26- 8A) ` M S B T L
� 8x � A p ! A (8x � p);

(A27-EQA) ` M S B T L
� t1 = t2 ! A (t1 = t2).

A26 and A27 , respectively, play the roles of A23 and A24-5 with respect to
the lesscomplexbranching modality.

Wearenow in a morecomfortableposition to study the requiredadditional
reasoningprinciples to support the veri�cation of livenessproperties. As is
well known, due to the fact that the set of safety properties is closedunder
intersection (Alp ern and Schneider 1985), it is not possibleto verify a liveness
property basedonly on a set of safety hypotheses. For this reason, liveness
propertiesare usually stated aspart of the axiomsin each given speci�cation or
can be derived from particular fairnessassumptionsmadein the axiomatisation
of the temporal logic. In Chapter 3, we shall explore thesepossibilities to start
the veri�cation process.

It is alsofundamental to be able to producederivations of livenessproper-
ties from previously veri�ed ones.The so-calledlattice principle, introducedas
a proof method by Owicki and Lamport (1982)and adoptedasa basicinference
rule in (Manna and Pnueli 1979,Lamport 1994),appearsto be the most general
way of supporting such derivations. Essentially , basedon the premisesthat � is
a well-foundedbinary relation and that a property p of a genericelement x im-
plies either another distinguishedproperty q being obtained or another element
y related to x being found with the property p, both facts related to the future,
the rule allows one to infer that the existenceof an element with the property
p implies the occurrenceof the distinguishedproperty q in the future. Such an
occurrenceis ensuredby the fact that there cannot be an in�nitely decreasing
chain of elements related by � , which is guaranteed by well-foundedness. In
this way, at least two livenessproperties are involved in the form of a complex
premiseand a simple conclusion.This inferencerule can be stated as follows:
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(WELL) f 8x � (p[x] ! F(q_ 9y � y � x ^ p[y]))g ` M S B T L
� (9z � p[z]) ! Fq.

Two issuesmust be treated if such a reasoningprinciple is to be adopted:
(i) to show how to specify and verify that somerelation is well-founded; and
(ii) to show that the inferencerule above is admissibleconsideringa particular
logical system. The connectionbetweenwell-foundedordersand the principle of
trans�nite induction with respect to their axiomatisation for temporal reasoning
wasstudied in detail by Kr•oger(1987). The requirement in his work of an order
relation appearsto be too strong in that transitivit y is not necessaryanywhere.
In any case,an induction schema11 remainswhich cannot be classicallytreated
usingthe �nitist methods for softwaredevelopment requiredhere. This rulesout
the possibility of either specifying or verifying within classical�rst-order logic
only that someformula de�nes a well-foundedrelation.

Abadi and Merz (1996) recently realisedthat the well-foundednessof a bi-
nary rigid relation may be axiomatisedin sometemporal logical systems.Using
our own system,they would (pseudo)-axiomatisethis property as follows:

(IRR) 8x � : (x � x);

(APR OG) G(8x � t = x ! X (t = x _ t � x)) ! FG(8x � t = x ! X (t = x))

provided an arbitrarily chosenand unconstrained
exible symbol t having the
samesort as the relation. Intuitiv ely, IRR says that � is irre
exiv e. APR OG
relieson t and the linear in�nite discretecharacter of each behaviour to assess
whether or not � has an in�nitely decreasingchain. If t eventually becomes
always invariant whenever it is bound to containing the values in a strictly
decreasingchain, then such a chain necessarilyhasan endpoint sincethe valueof
the term could otherwisedecreaseforever in somebehaviour. Becausethe same
test is performed for every behaviour, since APR OG implicitly encompasses
any possiblebehaviour, and for every sequenceof valuesfor t, sincethis term is
unconstrained,we can concludethat the relation is well-founded.

In order to hide the symbol t and guarantee that it is unconstrainedin
APR OG , Abadi andMerz (1996)adoptedthe quanti�cation over 
exible logical
variablesof TLA . Here,becauseour logic wasintentionally madelessexpressive
but simpler to de�ne and use,we adopt constructionsas follows:

De�nition 2.7.3 (In tro duction of unconstrained 
exible symbol) Given
a speci�cation � 1 = (� 1; 	 1) in obj Pres M S B T L such that s 2 Sort(� 1) and
� 2 Act(�), type(� ) = s � s, the speci�cation � 2 = (� 2; 	 2) in obj Pres M S B T L

11(TI) 8x � ((8y � y � x ! p[xny]) ! p[x]) ! 8x � p[x].
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and the morphism � 1
� #

! � 2 in morph Pres M S B T L are an extensionof � 1 by ad-
dition of unconstrained 
exible symbol t if the following conditions are ful�lled:

� t 2 Attr (� 2) with type(t) = � ! � (s) such that t 62� (Attr (� 1));

� 	 2 only contains � # (	 1) and the following two axioms:

(FREE) 8x � E(t = x);

(LIM) A G(8x � t = x ! XE (t � x)) ! EG (8x � t = x ! X (t � x)).

FREE says that each element of the respective sort may at any moment be the
value of the newly introduced 
exible symbol t, ensuring in this way that t is
really unconstrained. LIM guarantees that, if there is always a possibility to
follow an in�nitely decreasingchain of elements related by � , then there is a
behaviour in which t follows the whole in�nite chain, a limit closureaxiom. The
constructionabovecanberegardedasa particular instanceof the useof auxiliary
symbolsto support correctnessproofsasoriginally proposedby Owicki andGries
(1976)to recordpart of the history of each behaviour. In particular, the auxiliary
symbol t is introducedherejust to support the proof of well-foundednessbut is
not neededin (and is actually hidden from) the original speci�cation and canbe
dischargedafterwards. This is possiblebecausethe morphism in our de�nition
canbeshown to determineboth a conservativeextensionanda model expansion,
sincethe newly introduced properties are all concerningthe symbol t. So, the
extensiondoesnot really add new properties to the originally speci�ed theory.

A careful reading of the literature on WELL shows that � is assumed
to be an extra-logical symbol with a given rigid interpretation. However, there
is no reasonfor preventing the relation from being de�nable in terms of other
symbols nor for disregardingchangesin meaning as soon as well-foundedness
is insured. More properties of software systemscould be veri�ed by weakening
such assumptions. Therefore, it seemsto be reasonableto proposea formula
r 2 GM S B T L (�), � in obj SigM S B T L , to serve as a de�nition of � , i.e.:

x � y $ r [x; y]

such that � does not appear in r and F ree(r ) = f x; yg. This processcan be
mademoresystematicasin the introduction of unconstrained
exible symbols: a
newspeci�cation is proposedcontaining in addition just the relation symbol and
its de�ning axiom. The required morphism should be de�ned accordingly. This
morphismis automatically madefaithful in this way asrepresenting an extension
by explicit de�nition of a predicate like symbol. Note that � 2 Act(�) must
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be the casebecauseactions are the only relational symbols allowed in M SBTL
signatures.Whenever r is written in terms of some
exible symbol, � acquiresa

exible meaning. Otherwise,� is rigid and no changeis requiredin the rationale
above. It is important to stressthat, should both extensionsbe necessary, the
composition of the two involved morphismsmay also result in another faithful
morphism provided that the extensionby de�nitions be carefully stated so as
to prevent the symbol t from appearing in the formula r . This would harm the
correctnessof the whole construction.

To assigna time-dependent meaningto � and obtain a well-foundedrela-
tion, we needto de�ne formula r in such a way that at least IRR and APR OG
are derivable. Clearly, such a de�nition cannot involve temporal connectives
since the relation is supposedto associate elements of a particular domain at
isolated time instants. This is called a state formula in the literature (Manna
and Pnueli 1983). Now, even if the meaningof � may changeas time passes,
IRR ensuresthat the relation is always anti-re
exiv e, which is fundamental be-
cause,if not guaranteed, it would be possibleto witness the 
exible symbol in
APR OG becomingpermanently invariant even when all the decreasingchains
of related elements are in�nite, making WELL unsound. To admit somechange
without harming well-foundedness,we may require in addition that each change
preservescurrently related elements, a monotonicity requirement, and moreover
that this processof changeeventually stops,a termination requirement. These
conditions prevent � not only from having completely unrelated meaningsin
distinct moments but also from allowing decreasingchains which may be in-
de�nitely extendedby the addition of new elements. On the other hand, some
originally unrelated elements may eventually leave this situation. Putting these
requirements together, we reach the following axioms:

(ST AB) 8x; y � x � y ! X (x � y)

(TERM) FG(8x; y � : (x � y) ! X (: (x � y)))

Let us dealwith the secondissuementioned above, the admissibility of the
lattice principle. It is not di�cult to seethat the inferencerule WELL would
be derivable if the following axiom schemawerealsoderivable in M SBTL:

8x � (F(p[x]) ! 9y � F(y � x ^ p[y])) ! 8z � : F(p[z]) (2.7.1)

For a rigid relation symbol, this schemais equivalent to that of trans�nite induc-
tion, which is known to lack a �nite axiomatisation within classical�rst-order
logical systems(Ryll-Nardzwski 1952). To seethe equivalence,remove � from
the context of the secondtemporal connective above basedon the assumption



2.7. First-Order Temporal Logic 69

that this symbol is rigid and put q[x] def= : F(p[x]). The resulting sentence is
equivalent to TI . Considering the 
exible case,we could have somehope to
show that (2.7.1) is derivable since�rst-order temporal logical systemssuch as
M SBTL which possessa linear in�nite discretetime dimensionare able to in-
terpret minimal arithmetic (Abadi 1989)and thus mathematical induction can
be madeavailable. However, Gentzen (1943) proved that full trans�nite induc-
tion is not derivable in any �rst-order arithmetical system. This is even true for
somede�nitions of the standard ordering of the natural numbers as shown by
Troelstra and Schwichtenberg (1996). As a consequenceof theseimpossibility
results, we could concludethat WELL is not derivable in any case.

Studying this situation, however, we can seethat there are ways of over-
comingthe problem. Much in the way that temporal logic canbeusedto provide
a (pseudo)-axiomatisationof well-foundedness,the sametechnique of extending
the given speci�cation with an unconstrained 
exible symbol can be used to
support an admissibleproof rule having the schema above as the conclusion.
So,becausewe can extend our logical systemwith such an admissiblerule, the
negative results mentioned above are not really restrictive. Gabbay (1981) uses
the sameidea of introducing new symbols in derivations in order to prove com-
pletenessof many propositional temporal logical systems. Here, the respective
rule is stated as follows:

Prop osition 2.7.4 (Admissibilit y of INTR O) Assume that s 2 Sort(�),
t 2 Attr (�) with type(t) = � ! s and � 2 Act(�) with type(� ) = s � s for a
given � in obj SigM S T B L . The following inferencerule is admissiblein M SBTL:

(INTR O) 1: IRR 4: APR OG
2: STAB 5: FREE
3: TERM 6: LIM

8x � (F(p[x]) ! 9y � F(y � x ^ p[y])) ! 8x � : F(p[x])

Note that INTR O, a rule for introducingt in derivations, hasthe axiomsstudied
above as premisesand (2.7.1) as the conclusion. If we can adopt this inference
rule as part of our proof calculus, we can show that WELL is derivable. We
postpone this admissibility proof until Section2.9, calling the extendedlogical
systemM SBTL+ .

Theorem 2.7.5 (Admissibilit y of WELL) Assumethat s 2 Sort(�), t 2
Attr (�) with type(t) = � ! s and � 2 Act(�) with type(� ) = s � s for
a given � = (� ; 	) in obj Pres M S T B L +

. Provided that FREE , LIM , IRR ,
APR OG , STAB and TERM are derivable considering these symbols, the
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following inferencerule, for f p;qg � GM S B T L + (�) and x 2 VM S B T L + such that
x 62F ree(q), is alsoderivable in M SBTL + :

(WELL) f 8x � (p[x] ! F(q_ 9y � y � x ^ p[y]))g ` M S B T L +

� (9z � p[z]) ! Fq.

Proof: We follow the structure of the proof developed by Kr•oger(1987). Essen-
tially , we needto substitute the useof the trans�nite induction in his work by
an application of the inferencerule proposedabove:

1. 8x � (p[x] ! F(q _ 9y � y � x ^ p[y]) Ass
2. G(p[x] ! F(q _ 9y � y � x ^ p[y])) A19- 8, R1-MP 1, R2-G
3. F(p[x]) ! FF (q _ 9y � y � x ^ p[y]) MON-GF , R1-MP 2
4. FF (q _ 9y � y � x ^ p[y]) ! F(q _ 9y � y � x ^ p[y]) IDEM-F
5. F(p[x]) ! F(q _ 9y � y � x ^ p[y]) HS 3, 4
6. F(q _ 9y � y � x ^ p[y]) ! Fq _ F(9y � y � x ^ p[y]) DIST-ORF
7. F(p[x]) ! Fq _ F(9y � y � x ^ p[y]) HS 5, 6
8. F(9y � y � x ^ p[y]) ! Fq _ 9y � F(y � x ^ p[y]) BAR C-F , OR-R
9. Fq ! Fq _ 9y � F(y � x ^ p[y]) REFL , OR-R
10. Fq _ F(9y � y � x ^ p[y]) ! Fq _ 9y � F(y � x ^ p[y]) OR-L 8, 9
11. 8x � (F(p[x]) ! Fq _ 9y � F(y � x ^ p[y])) HS 7, 10; GEN- 8
12. F(p[z]) ! Fq INTR O, R1-MP 11, A19- 8, R1-MP
13. p[z] ! Fq REFL , OR-R , D8-F , HS 12
14. (9z � p[z]) ! Fq GEN- 8 13, EX C- 89, HS (WELL)

The application of INTR O is very demanding. We have to obtain be-
forehandall the special purposeaxiomsstudied in this section. When the given
relation is rigid, wecansimplify this processby showing that STAB andTERM
follow from the rigid interpretation of � . The theorem below allows us to gen-
eralisein time all the sentenceswritten only in terms of rigid symbols:

Theorem 2.7.6 (In varian t rigid form ulas) The axiomschemabelow is prov-
able in M SBTL for any sentence p 2 GM S B T L (�) \ S+ , where S is the set
S def= VM S B T L [ F unct(�) [ (L M S F O L � f begg), for any � in obj SigM S B T L :

(RIGID) ` M S B T L
� p ! Gp.

Proof: We �rst examineatomic formulas and then proceedby structural induc-
tion on GM S B T L (�). Without attribute and action symbols in the underlying
language,the possibleatomic formulas can only be equality tests of the form
p � (t1 = t2), for f t1; t2g � Term(�) s, s 2 Sort(�). But we have A24 which
ensuresp ! Gp in this case.For the induction we have the following cases:

� p � : q:
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1. (q ! ? ) ! G(q ! ? ) Ind. Hyp.
2. : q ! (q ! ? ) NEG-L , PERM , R1-MP , D2- ?
3. : q ! G(q ! ? ) HS 2, 1
4. (g ! :? ) ! ((q ! ? ) ! : q) NEG-R , PERM , R1-MP
5. q ! > A1-I , D1- >
6. (q ! q) ! :: (q ! q) DOUB , A3-N , R1-MP
7. g ! :? D1- > , D2- ? 6, HS 5
8. (q ! ? ) ! : q R1-MP 4, 7
9. G(q ! ? ) ! G(: q) R2-G 8, MON-G , R1-MP
10. : q ! G(: q) HS 5, 9

� p � q ! r :
1. : q ! G(: q) Ind. Hyp.
2. r ! Gr Ind. Hyp.
3. : q _ r ! G(: q) _ Gr OR-R 1, OR-R 2, OR-L
4. G(: q) _ Gr ! G(: q _ r ) DIST-ORG
5. : q _ r ! G(: q _ r ) HS 3, 4
6. (:: q ! r ) ! G(:: q ! r ) D3-OR 5
7. (q ! r ) ! (:: q ! r ) DOUB , RTRAN , R1-MP
8. (q ! r ) ! G(:: q ! r ) HS 7, 6
9. q ! :: q DOUB , A3-N , R1-MP
10. (q ! :: q) ! (( :: q ! r ) ! (q ! r )) LTRAN
11. (:: q ! r ) ! (q ! r ) R1-MP 9, 10
12. G(:: q ! r ) ! G(q ! r ) R2-G 11, MON-G , R1-MP
13. (q ! r ) ! G(q ! r ) HS 8, 12

� p � 8x � q:
1. q ! Gq Ind. Hyp.
2. 8x � (q ! Gq) GEN- 8 1
3. 8x � (q ! Gq) ! (8x � q ! 8x � Gq) MON- 8
4. 8x � q ! 8x � Gq R1-MP 2, 3
5. 8x � Gq ! G(8x � q) BAR C-G
6. 8x � q ! G(8x � q) HS 4, 5

� p � qV r :
1. q ! Gq Ind. Hyp.
2. ? ! r REFL , NEG-L , R1-MP , D2- ?
3. X q ! qV r R2-G 2, A4-GV , R1-MP , D7-X
4. GX q ! G(qV r ) R2-G 3, MON-G , R1-MP
5. GG q ! GX q RPL-GX , R2-G , MON-G , R1-MP
6. Gq ! GX q IDEM-G , HS 5
7. q ! G(qV r ) HS 1, 6; HS 4
8. G(q ! G(qV r )) R2-G 7
9. X q ! X G(qV r ) MON-GX , R1-MP 8
10. G(G(qV r ) ! qV r ) REFL-G , R2-G
11. X G(qV r ) ! X (qV r ) MON-GX , R1-MP 10
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12. X q ! X (qV r ) HS 9, 11
13. qV r ! X (q _ r ^ qV r ) FIX-V
14. X (q _ r ^ qV r ) ! X q _ X (r ^ qV r ) A9-V , D7-X
15. X r ^ X (qV r ) ! X (qV r ) REFL , AND-L
16. X (r ^ qV r ) ! X (qV r ) DIST-ANDX , R1-MP 15
17. X q _ X (r ^ qV r ) ! X (qV r ) OR-L 11, 16
18. qV r ! X (qV r ) HS 13, 14; HS 17
19. qV r ! G(qV r ) R1-G 18, A10-G , R1-MP

� p � A q:
1. q ! Gq Ind. Hyp.
2. A (q ! Gq) R4-A 1
3. A q ! A Gq A13-A , R1-MP 2
4. A Gq ! GA q COM-A G
5. A q ! G(A q) HS 3, 4 (RIGID)

Let us recall the main purpose of the proposition and theorems above.
We wanted to establish a designdiscipline to support the veri�cation of live-
nessproperties. Now we can say it consistsin the following steps: (i) if nec-
essary, extend the given speci�cation with the relation symbol and a suitable
explicit de�nition; (ii) extend the speci�cation with an arbitrarily chosenun-
constrained
exible symbol via a faithful morphism; (iii) derive IRR , APR OG
and alsoSTAB and TERM if required; (iv) derive the livenessproperty based
on WELL . All these steps are justi�ed by the previous results. A complete
examplewill be provided in Chapter 3.

Someauthors attempt to deal with the problem above in distinct ways.
Lamport (1994)adoptsa basicinferencerule for well-foundedinduction but does
not explain in full detail how the required premisein the rule is to be obtained.
Abadi andMerz (1996)sketch a solution adopting the quanti�cation over 
exible
variablesof TLA , which is known to increaseconsiderablythe expressive power
of any temporal proof calculus. On the other hand, it is not clear how this and
the other logical connectivesarerelated. Andr�eka et al. (1995)prefersto adopt a
structural induction schemaover so-calleddata-domains,which are speci�ed in
non-standard�rst-order temporal logic. All theseauthors have only considered
the casein which a rigid relation symbol is given.

2.8 A Particular Mo del Theory

Semantic modelsfor branching time such astransition systemsand event struc-
tures abound in the literature. The following de�nition is of the �rst kind:
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Figure 2.14: Faithful logical systemembeddings.

De�nition 2.8.1 (Branc hing Time Structure) A branching time structure
or frame is a tuple (� , � 0, � , �) where:

� � and � 0 � � are setsof worlds and initial worlds respectively;

� � : � ! P (� ) is the accessibility relation (a powerset function);

� � is a non-empty set of possiblebehaviours. Each L 2 � is a function
such that 12: (i) domL � � and cod L def= N ; (ii) L(w) = 0 i� w 2 � 0; (iii)
8w; w0 2 domL � L(w) = L(w0) ! w = w0; (iv) 8n 2 cod L � 9w 2 domL �
L(w) = n; and (v) 8w; w0 2 domL � L(w0) = L(w) + 1 ! w0 2 � (w).

The sequencesof worlds which determinebehaviours in � (not necessarilyof any
computer program) are in a one to one correspondencewith the set of natural
numbers, according to (iii) and (iv). Hence,each L 2 � is invertible and we
shall use this fact to de�ne the meaningof A . It is also in this semantic way
that problematic cyclic 
o ws of time are avoided. Concerning the semantic
assumptionsover branching time structures proposedin the literature, it is easy
to seethat pre�x (Stirling 1992), su�x and fusion (Emerson1983)closuresdo
not follow from our de�nition.

Basedon branching time structures, signaturesymbols are interpreted as:

De�nition 2.8.2 (In terpretation Structure) An interpretation structure for
a signature � is a tuple � = (T, U, G, A) where:

12Recall that we deal with ! -long behaviours only, as explained in Section 2.4.
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� T is a branching time structure;

� U maps each s 2 Sort(�) to a non-empty collection sU and each f 2
F un(�) with type(f ) = hs1; : : : ; sn i ! s to a function f U : s1U � : : : �
snU ! sU ;

� G maps each g 2 Attr (�) with type(g) = hs1; : : : ; sn i ! s to a function
G(g) : s1U � : : : � snU ! � ! sU ;

� A maps each a 2 Act(�) with type(a) = hs1; : : : ; sn i to a function A(a) :
s1U � : : : � snU ! P (� ).

We adopt the interpretation structures above as modelsof logical formulas. As
a result, whenever a formula has a model, the sets of worlds � and � 0 in the
underlying frame are not empty. Note how � appearing as an argument in
the interpretation of somesymbols is related to their 
exible, time-dependent
meaning. Interpreting symbols in Act(�) particularly shows that the respective
actionsmay happen in parallel amongthemselves,in which casethis is speci�ed
through the conjunction of their symbols, or with respect to other actionsin the
environment. This is much in keepingwith the open but not necessarilyinter-
leaving semantics proposedin (Barringer 1987, Fiadeiro and Maibaum 1992).
The notion of reduct of a model along a signaturemorphism will alsobe useful
in our subsequent investigations:

De�nition 2.8.3 (Reduct of a model) Given � 1
�! � 2 in morph SigM S B T L

and an interpretation structure � 2 = (T2, U2, G2, A2) for � 2, the model � 1 =
(T2, U2 � � , G2 � � , A2 � � ) is called the � -reduct of � 2.

We interpret terms asde�ned below. Becausewe have a �rst-order logic, it
is �rst necessaryto de�ne how logicalvariables(which arenot speci�ed aspart of
signatures)are assignedto the elements of quanti�cation domains. Assignments
are alternatively called valuations:

De�nition 2.8.4 (Assignmen t) Given an interpretation structure � for a sig-
nature �, an assignmentN for � mapseach set Class(�) s to sU .

De�nition 2.8.5 (In terpretation of Terms) Given an interpretation struc-
ture � = (T, U, G, A) for a signature� and an assignment N for � , the function
[[]]� ;N : � ! sU de�ned asfollowsis an interpretation of termsof sort s 2 Sort(�)
at a world w 2 � :

� [[x]]� ;N (w) def= N (x) if x 2 Class(�) s;
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� [[f (t1; : : : ; tn )]]� ;N (w) def= f U ([[t1]]� ;N (w); : : : ; [[tn ]]� ;N (w));

� [[g(t1; : : : ; tn )]]� ;N (w) def= (G(g)([[t1]]� ;N (w); : : : ; [[tn ]]� ;N (w)))( w).

We have said that the branching modality of our logic is to be interpreted
with the help of an equivalencerelation over behaviour pre�xes. We de�ne such
a relation in a pointwisemanner,in termsof the equivalenceof worlds composing
the possiblebehaviours of a structure, as follows:

De�nition 2.8.6 (Equiv alent worlds) Two worlds f w; w0g � � of a branch-
ing time structure T = (� ; � 0; �; �) in an interpretation � = (T, U, A, G) for a
signature � are said to be equivalent, w ' w0, if and only if

8g 2 Attr (�) � 8x1; : : : ; xn � G(g)(x1; : : : ; xn )(w) = G(g)(x1; : : : ; xn )(w0)

8a 2 Act(�) � 8x1; : : : ; xn � w 2 A(a)(x1; : : : ; xn ) , w0 2 A(a)(x1; : : : ; xn )

Indeed, ' is an equivalencerelation being re
exive, symmetric and transitive
dueto the equality and the biconditional in the sentencesabove. Sincewechoose
the usual interpretation of logical formulas below, it is not di�cult to conclude
by induction that equivalent worlds satisfy the sameset of state formulas, those
formedout of variables,signaturesymbolsand classicalconnectivesonly. Hence,
two behaviours areconsideredto be equivalent up to a given moment if and only
if they have identical past histories, i.e., they satisfy at each previous moment
the sameset of such formulas. This is again an equivalencerelation because
of the sameproperty of ' . Note that theseinternal notions of equivalenceare
di�erent from the usualexternal notion of zig zags(van Benthem 1984)because
they relate statesand behaviours of a model asopposedto the relations between
models, interpretation structures, de�ned by zig zags.

We usethe above to de�ne the satisfaction of logical formulas:

De�nition 2.8.7 (Satisfaction of Form ulas) Given a signature �, the sat-
isfaction of a �-form ula at world wi of a behaviour L (i.e., wi 2 dom L) by a
structure � = (T, U, G, A) with assignment N is de�ned as follows:

S1. (� ; N; L; wi ) j= a(t1; : : : ; tn ) i� wi 2 A(a)([[t1]]
� ;N (wi ); : : : ; [[tn ]]� ;N (wi ));

S2. (� ; N; L; wi ) j= : p i� it is not the casethat (� ; N; L; wi ) j= p;

S3. (� ; N; L; wi ) j= p ! q i� (� ; N; L; wi ) j= p implies (� ; N; L; wi ) j= q;

S4. (� ; N; L; wi ) j= 8x � p i� for every v 2 cod N and assignment Nv for � such
that Nv(y) = N (y) if y 6= x and Nv(y) = v otherwise,(� ; Nv; L; wi ) j= p;
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S5. (� ; N; L; wi ) j= (t1 = t2) i� [[t1]]� ;N (wi ) = [[t2]]
� ;N (wi );

S6. (� ; N; L; wi ) j= beg i� L(wi ) = 0;

S7. (� ; N; L; wi ) j= pV q i� there is wj 2 domL with L(wi ) < L(wj ), (� , N , L,
wj ) j= p and (� ; N; L; wk) j= q for any wk 2 domL whereL(wi ) < L(wk) <
L(wj );

S8. (� ; N; L; wi ) j= A p i� for every L j 2 � such that wk ' (L � 1
j � L)(wk) for

each wk 2 domL with L(wk) < L(wi ), (� ; N; L j ; (L � 1
j � L)(wi )) j= p.

The de�nition of satis�abilit y above determinesa 
oating interpretation for our
logic, according to the terminology of Manna and Pnueli (1989). That is, the
initial instant has no special signi�cance in the interpretation, even though it
is represented as the logical connective beg. Basedon this de�nition, it is not
di�cult to prove by structural induction that:

Prop osition 2.8.8 (Equiv alent worlds satisfy the same state form ulas)
Given an interpretation structure � = (( � , � 0, � , �), U, G, A) for a signature�
and an assignment N for � , w ' w0 i� for any state formula p, (� ; N; L; w) j= p
i� (� ; N; L0; w0) j= p for any f L; L 0g � � such that w 2 domL, w0 2 domL0.

We de�ne an ascendingseriesof degreesof validit y assuggestedby Chellas
(1980). De�nition 2.8.7 corresponds to satis�ability . We say that a �-form ula
p is locally true in an interpretation structure � = (T, U, G, A) for � at world
w of a behaviour L if and only if for every assignment N , (� ; N; L; w) j= p.
A sentence p, a formula such that F ree(p) = f g, is true in � if and only if
locally true in each behaviour L and world w such that w 2 dom L. We write
� j= p in this case. A semantic consequencerelation over a model � , 	 j= �

� p,
is simply de�ned by saying that � j= q for every sentence q 2 	 implies � j= p.
If we require this for every model, we obtain the semantic consequencerelation
	 j= � p. Completing our hierarchy, p is said to be valid in T if and only if true
in any � basedon T. A sentenceis consideredto be universally valid if and only
if it is valid in any branching time structure.

As a last word in this section, it is important to mention that restricting
the languageand the interpretation structures above in someparticular ways
result in models of other logics studied in this chapter. For instance, if we
forget assignments and quanti�ers we obtain propositional branching time logic
models. Forgetting the branching modality and that interpretations consist of
non-empty collectionsof behaviours, we obtain models of linear time logic by
picking up single elements from each such collection of behaviours. Models
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for classicpropositional logic are obtained by forgetting completely the time
dimensionand the respective connectives.

2.9 Some General Logical Results

Our main purposein this section is to show that M SBTL is a logical system
in the precisesenseof De�nition 2.2.7. We have already shown that all the
requiredproperties to de�ne a full entailment systemare ful�lled. Now we have
to ensurethat M SBTL determinesan institution.

We �rst deal with the problem of de�ning a categoryof modelsassociated
to each signature. The structure of the objects in this categoryhasalreadybeen
de�ned in Section 2.8 in the form of interpretation structures. The collection
of functions admitted as morphisms in such categoriesnormally results from
an arbitrary decisionconcerningthe particular modal logic, so we adopt here
an extended version of the so-calledp-morphisms (Segeberg 1970). Given a
signature� with two interpretation structures � i = (Ti , Ui , Gi , A i ) such that Ti

= (� i , � 0i , � i , � i ), 1 � i � 2, a �rst-order p-morphism (fp-morphism for short)
� : � 1 ! � 2 is a pair (� U , � � ), where � � : � 1 ! � 2, � U : U1 ! U2 and � U is a
model homomorphismof the classical�rst-order functional calculus(recall that
predicateshave a temporalisedinterpretation here). It is important to mention
that the following condition is required from any such an homomorphism. For
every f 2 F unct(�), si 2 Sort(�), the following diagram commutes:

-

? ?
-

s�
U1

s�
U2

sU1 sU2

� �
U

� U

� U (f U )f U (2.9.1)

Moreover, for each fp-morphism (� U , � � ), � � is required to map behaviours
onto behaviours and the following conditions must be obeyed, for every world
f wi ; w0

i g � � i , 1 � i � 2:

(i) w1 2 � 01 ) � � (w1) 2 � 02 ;

(ii) w0
1 2 � 1(w1) ) � � (w0

1) 2 � 2(� � (s1));

(iii) w0
2 2 � 2(� � (w1)) ) 9w0

1 � w0
1 2 � 1(w1) ^ � � (w0

1) = w0
2;

(vi) For every g 2 Attr (�) such that arity (g) = n,

8x1; : : : ; xn �� U (G1(g)(x1; : : : ; xn )(w1)) = G2(g)( � U (x1); : : : ; � U (xn ))( � � (w1));
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(v) For every a 2 Act(�) such that arity (a) = n,

8x1; : : : ; xn �w1 2 A1(a)(x1; : : : ; xn ) , � � (w1) 2 A2(a)( � U (x1); : : : ; � U (xn )) :

With the de�nition above, it is not di�cult to check that ASS and ID are
obtained, validating the following proposition:

Prop osition 2.9.1 (Categories of M SBTL Mo dels) The collectionsof in-
terpretation structures and fp-morphismsfor each signature � in obj SigM S B T L

determinea �-indexed family of categoriesof modelsMo dM S B T L
� .

Note in the de�nition of institution that each signature� in obj SigM S B T L

is assignedto a categoryof modelsMo dM S B T L
� by a contravariant functor M od :

SigM S B T L ! Cat op. Consideringthe fp-morphismsde�ned above, this functor
can be de�ned as follows:

1. M od(�) def= Mo dM S B T L
� for each � in obj SigM S B T L ;

2. M od(� : � 1 ! � 2) def= M od(� ) : M od(� 2) ! M od(� 1) for each � i in
obj SigM S B T L , 1 � i � 2, and each SigM S B T L -morphism � ;

3. For each � 1
�! � 2 in morph SigM S B T L , the following diagram commutes

for each � i = (Ti ; Ui ; Gi ; A i ) in obj Mo dM S B T L
� i

, 1 � i � 2, and each pair
(X ; Y) in the set f (Sort; U); (F unct; U); (Attr ; G); (Act; A)g:

-

? ?
�

X 1(� 1) (� � X 1)(� 1)

(Y1 � X 1)(� 1) (Y2 � � � X 1)(� 1)

�

M od(� )

Y2Y1 (2.9.2)

4. For each � 1
�! � 2 in morph SigM S B T L , � i = (Ti ; Ui ; Gi ; A i ) in obj Mo dM S B T L

� i
,

Ti = (� i ; � 0i ; � i ; � i ), 1 � i � 2, and each � 1
�! � 2 in morph Mo dM S B T L

� i
, the

following diagramcommutesfor each pair (X ; ' ) in the setf (U; � U ); (� ; � � )g:

-

? ?
-

X 1 X 2

M od(� )(X 1) M od(� )(X 2)

'

M od(� )( ' )

M od(� )M od(� ) (2.9.3)

The last two conditions above are to guarantee that the structure of each cate-
gory of models is preserved by the model functor.
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Lemma 2.9.2 (M SBTL Institution) With the de�nitions provided above,
the tuple (SigM S B T L , GM S B T L , M od, j= M S B T L ) is an institution.

Proof: We only needto verify that the satisfactioncondition is ful�lled. That is,
for every � 1

�! � 2 in morph SigM S B T L , p 2 GM S B T L (� 1) and � in obj Mo d � 2 ,

� j= M S B T L
� 2

� # (p) , M od(� )( � ) j= M S B T L
� 1

p

In particular, p can only be a sentencein this assertionsincethe notion of truth
in a model as de�ned in Section2.8 makesthis requirement.

Without lossof generality, wecansketch this proof consideringthat � 1 and
� 2 are the samesignature. This is due to the compositional de�nition of term,
sentence and assignment functors and also due to (2.9.2) and (2.9.3), which
guarantee that each category of models has an exact image along signature
morphisms. That is, the internal structure of each model is matched exactly
(2.9.2) and the same happens to the internal structure of each fp-morphism
(2.9.3). Note, however, that more objects and morphismsmay be present in the
sourcecategoryof models and more symbols may exist in the target signature.
Thesedo not createa problem becausewe only needto work with the imageof
� and the respective reducts proving the satisfaction condition. The remainder
of the co-domainof thesemorphismscan be safely ignored.

Now we can develop the rest of the proof by a structural induction argu-
ment on the grammarof the language.Considera �xed signature� with models
� i = (Ti , Ui , Gi , A i ) such that Ti = (� i , � 0i , � i , � i ), 1 � i � 2, and � 2

�! � 1. We
wish to show that for any L 2 2 � 2 and any w2 2 dom L2, (� 2; N 0; L2; w2) j= p
for any assignment N 0 for � 2 if and only if (� 1; N; � # (L2); � (w2)) j= p for any
assignment N for � 1. This is an extensionof the well-known p-morphismlemma
in the modal logics literature (Goldblatt 1992). We examinein the subsequent
paragraphthe basecaseof the induction argument and then proceedwith some
interesting casesof the induction step.

Given rigid terms t i 2 Term(�) s, 1 � i � 2, s 2 Sort(�), we have
(� 2; N 0; L2; w2) j= (t1 = t2) if and only if [[t1]]� 2 ;N 0

(w2) = [[t2]]� 2 ;N 0

(w2). Be-
causeeach t i is assumedto be rigid, their interpretations do not depend on
the underlying world. Assume in addition that each t i is a constant, i.e.,
t i 2 F unct(�) such that type(t i ) = � ! s, and then their interpretations
will not depend on the assignment as well. Due to the functionality of � U ,
[[t1]]� 1 ;N (� (w2)) = [[t2]]

� 1 ;N (� (w2)). Hence,(� 1; N; � # (L2); � (w2)) j= (t1 = t2). The
converse is proved observing that for constants the homomorphismcondition
(2.9.1) requires that [[t1]]� 2 ;N 0

(w2) = � ([[t1]]� 2 ;N 0

(w2)). For non-rigid constants,
case(iv) in the de�nition of fp-morphism guarantees that the biconditional
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above can be obtained. This rationale easily generalisesto any kind of term
and to state formulas as well.

Let us examine the temporal formulas. Assumethat (� 2; N 0; L2; w2) j=
beg. Linking S6, requirements (ii) in De�nition 2.8.1 and (i) in the de�nition
of fp-morphism, we infer that � (w2) 2 � 01 . Then, the �rst two applied in
the inverseorder also justify (� 1; N; � # (L2); � (w2)) j= beg. For the converse,
supposethat (� 1; N; � # (L2); � (w2)) j= beg but (� 2; N 0; L2; w2) j= beg is not the
case.The �rst conjunct ensuresthat � (w2) is the �rst element in dom� # (L2).
Moreover, the secondoneshows that 9w3 2 domL2 � L2(w2) = L(w3) + 1. Using
condition (ii) in the de�nition of fp-morphismsshows that � (w2) is not the �rst
element in dom � # (L2), which generatesa contradiction. We conclude that
(� 2; N 0; L2; w2) j= beg i� (� 1; N; � # (L2); � (w2)) j= beg. The caseof pV q is
developed basedon the back and forth conditions (iii) and (ii). The A p caseis
developed basedon the fact that each � � is onto concerningbehaviours.

We have concludedthat (� 2; N 0; L2; w2) j= p i� (� 1; N; � # (L2); � (w2)) j= p
for any p 2 G(�). Extending this partial result to the casewherewehavemodels
for di�erent signatures,assumein addition that � 1

�! � 2, � 1 in obj Mo d � 2 ,
M od(� ) = � and � (� 2) = � 1. Applying the di�erent morphisms and functors
involved in this situation, we obtain � 1 j= � 2

� # (p) if and only if � 2 j= � 1
p.

Therefore,the tuple above is an institution. (M SBTL Institution )

We turn to the veri�cation of the soundnesscondition in De�nition 2.2.5:

Lemma 2.9.3 (Soundness of M SBTL) M SBTL is sound.

Proof: We show in the usual way, basedon the notion of satisfaction, that each
logical axiom is universally valid and the application of each inferencerule pre-
servesvalidit y, meaningthat valid premisesimply valid conclusions.We present
herethe interesting casesonly, leaving the veri�cation of the remainingcasesfor
Appendix I I. An additional structural induction argument on our Hilbert-style
proofs will su�ce to guarantee that each entailment preservesvalidit y.

We prove that each inferencerule in Figure 2.15 preservesvalidit y as fol-
lows, assumingthat an underlying signature � with a branching time structure
T are given and also that the notion of satisfaction for the derived connectives
has already beenworked out. Whenever necessary, we denote by � 0

T an inter-
pretation structure which is obtained from � = (T, U, G, A) by varying all the
components apart from the frame T.

(R1-MP) Assumethat (i) (� T ; N; L; wi ) j= p for any � T , N , L, wi 2 dom L
and (ii) (� 0

T ; N 0; L0; w0
i ) j= p ! q for any � T , N , L and wi 2 domL. From
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Syntax: For a given signature �, we have:
(Terms ) T ::= x (variables) j f (T1; : : : ; Tm ) (functions) j g(T1; : : : ; Tn ) (attributes)
(A toms ) A ::= Ts = Ts (equality) j a(T1; : : : ; Tn ) (actions)
(Form ulas ) F ::= A j : F j F ! F j (F ) j 8x � F j beg j (F )V (F ) j A (F )

De�nitions:
(D1 � > ) > def= p ! p (D2 � ? ) ? def= :>
(D3 � OR ) (p _ q) def= (: p ! q) (D4 � AND ) (p ^ q) def= : (p ! : q)
(D5 � IFF ) (p $ q) def= (p ! q) ^ (q ! p) (D6 � X ) X p def= pV ?
(D7 � U ) pU q def= q _ (p ^ qV p) (D8 � F) Fp def= > U p
(D9 � G) Gp def= : F(: p) (D10 � W ) pW q def= Gp _ pU q
(D11 � E) Ep def= : A (: p) (D12 � 9) 9x � p def= :8 x � : p
(D13 � NEQ ) t1 6= t2

def= : (t1 = t2)
(D14 � UNI ) 9! x � p[x] def= 9x � (p[x] ^ 8y � p[y] ! x = y)

Axioms: In A20 and A23 , x 62F ree(p); in A19 , A24-5 and A27 ,
(E(t) [ E(t1) [ E(t2)) \ Attr (�) = f g; p 2 Atom(�) in A22 :

(A1 � I ) p ! (q ! p)
(A2 � I ) (p ! (q ! r )) ! ((p ! q) ! (p ! r ))
(A3 � N ) (: p ! : q) ! (q ! p)
(A4 � GV ) G(p ! q) ! (pV r ! qV r )
(A5 � GV ) G(p ! q) ! (rV p ! rV q)
(A6 � V ) pV q ! pV (q ^ pV q)
(A7 � V ) (p ^ qV p)V p ! qV p
(A8 � V ) pV q ^ rV s ! (p ^ r )V (q ^ s) _ (p ^ s)V (q ^ s) _ (q ^ r )V (q ^ s)
(A9 � V ) (p _ q)V r ! pV r _ qV r
(A10 � G) G(p ! X p) ! (p ! Gp)
(A11 � X ) X >
(A12 � Xb eg) : X (beg)
(A13 � A ) A (p ! q) ! (A p ! A q)
(A14 � A ) A p ! p
(A15 � EA ) Ep ! AE p
(A16 � EV ) (Ep)V q ! E(pV q)
(A17 � A U ) A (p ! X (qU p)) ! (p ! XA (qU p))
(A18 � Eb eg) E(beg) ! beg
(A19 � 8) (8x � p[x]) ! p[xnt]
(A20 � 8) 8x � (p ! q) ! (p ! 8x � q)
(A21 � EQ ) t = t
(A22 � EQ ) t1 = t2 ! (pf qnt1g ! pf qnt2g)
(A23 � 9V ) (9x � q)V p ! 9x � qV p
(A24 � EQG ) t1 = t2 ! G(t1 = t2)
(A25 � NEQG ) t1 6= t2 ! G(t1 6= t2)
(A26 � 8A ) 8x � A p ! A (8x � p)
(A27 � EQA ) t1 = t2 ! A (t1 = t2)

Inference Rules: In R5, we considerthat x 62F ree(p):
(R1 � MP ) f p;p ! qg ` q (R2 � G) f pg ` Gp
(R3 � begG) f beg ! Gpg ` p (R4 � A ) f pg ` A p
(R5 � 8) f p ! qg ` p ! 8x � q

Figure 2.15: De�nition of M SBTL.
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(ii) and S3, we infer that (� T ; N; L; wi ) j= p implies (� 0
T ; N 0; L0; w0

i ) j= q,
moving in this way the quanti�cation over interpretations, assignments,
behaviours and worlds to range over each instanceof the satisfaction re-
lation in isolation. Using (i), we concludethat (� 0

T ; N 0; L0; w0
i ) j= q for any

� 0
T , N 0, L0 and w0

i 2 domL0;

(R2-G) Assumethat (� T ; N; L; wi ) j= p for any � T , N , L and wi 2 domL. For
a �xed L, weconsequently have for every wj 2 domL that (� T ; N; L; wj ) j=
p, which is equivalent to saying that (� T ; N; L; wi ) j= Gp for any � T , N , L
and wi 2 domL, accordingto the de�nition of satisfaction of Gp;

(R3-b egG) Assumethat (� T ; N; L; wi ) j= beg ! Gp for any � T , N , L and
wi 2 dom L. In particular, for w0 2 dom L such that L(w0) = 0, we
have (� T ; N; L; w0) j= beg ! Gp. An application of S3 shows that (� T ,
N , L, w0) j= beg implies (� T ; N; L; w0) j= Gp, but the antecedent of
this conditional is evident given S6 and the de�nition of w0. From the
consequent of the conditional and the de�nition of satisfaction of Gp, we
concludethat (� T ; N; L; wi ) j= p for any � T , N , L and wi 2 domL;

(R4-A) Assumethat (� T ; N; L; wi ) j= p for any � T , N , L and wi 2 domL. For
a �xed L, we have, for every L i 2 � such that sk ' (L � 1

i � L)(wk) for each
wk 2 domL with L(wk) < L(wi ), that (� T ; N; L i ; (L � 1

i � L)(wi )) j= p, based
on our assumptionand that each L i is invertible. From S8, we conclude
that (� T ; N; L; wi ) j= A p for any � T , N , L and wi 2 domL;

(R5- 8) Assumethat (� T ; N; L; wi ) j= p ! q for any � T , N , L and wi 2 domL
and also that x 62F ree(p). So, from S3, (i) (� T ; N; L; wi ) j= p implies
(� T ; N; L; wi ) j= q. Now, for each v 2 cod N , de�ne Nv as Nv(y) def= N (y)
if y 6= x or Nv(y) def= v otherwise. Note that, becausex 62F ree(p), (ii)
(� T ; N; L; wi ) j= p implies (� T ; Nv; L; wi ) j= p, by structural induction
on the notions of interpretation and satisfaction basedon the de�nitions
of F ree and assignments. Substituting N for Nv in (i), we obtain (iii)
(� T ; Nv; L; wi ) j= p implies (� T ; Nv; L; wi ) j= q. Moving the quanti�cation
over Nv inwards in (ii) and connectingthis statement to (iii), we infer that
(� T ; N; L; wi ) j= p implies (� T ; Nv; L; wi ) j= q for any Nv de�ned as above,
which meansthat (� T ; N; L; wi ) j= p ! 8x � q(x) for any � T , N , L and
wi 2 domL by applying S3 and S4.

The universalvalidit y of each logical axiom listed in Figure 2.15is veri�ed
as follows, assuminggeneric� , N , L and si 2 domL for �:
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(A1-I) Suppose that (i) (� ; N; L; wi ) j= p and (ii) it is not the casethat (� ,
N , L, wi ) j= q ! p. From (ii) and S3, we infer that it is not true that
(� ; N; L; wi ) j= q implies (� ; N; L; wi ) j= p. So, we have (� ; N; L; wi ) j= q
but (� , N , L, wi ) j= p does not hold, which contradicts (i). Therefore,
(� ; N; L; wi ) j= p implies (� ; N; L; wi ) j= q ! p and we conclude that
(� ; N; L; wi ) j= p ! (q ! p) using S3;

(A4-GV) Supposethat (i) (� ; N; L; wi ) j= G(p ! q) and (ii) (� ; N; L; wi ) j=
pV r ! qV r doesnot hold. From (ii) and S3, we have (� ; N; L; wi ) j= pV r
but (� ; N; L; wi ) j= qV r is not the case.According to S7, this meansthat
(iii) there is an wj 2 domL with L(wi ) < L(wj ) such that (� ; N; L; wj ) j= p
and (� ; N; L; wk) j= r for any wk 2 domL whereL(wi ) < L(wk) < L(wj ),
and (iv) for every wm 2 domL with L(wi ) < L(wm ), (� ; N; L; wm ) j= q and
(� ; N; L; wn) j= r for any wn 2 domL whereL(wi ) < L(wn ) < L(wm ) are
not both true. In addition, the de�nition of satisfactionof Gp, (i) and S3
leadsto (v) (� ; N; L; wj ) j= p implies (� ; N; L; wj ) j= q for any wj 2 domL
such that L(wi ) � L(wj ). Applying the �rst half of (iii) in (v), we infer
that (� ; N; L; wj ) j= q. For wm = wj , when we conjoin this partial result
to (iv), we obtain a contradiction. We conclude,from the negationof our
assumptionand S3, that (� ; N; L; wi ) j= G(p ! q) ! (pV r ! qV r );

(A6-V) Supposethat (i) (� ; N; L; wi ) j= pV q. From (i) and S7, we infer that
(ii) there is wj 2 dom L with L(wi ) < L(wj ) such that (� ; N; L; wj ) j= p
and (� ; N; L; wk) j= q for any wk 2 domL whereL(wi ) < L(wk) < L(wj ).
Hence,for each wm such that L(wk) < L(wm ) < L(wj ), we know from (ii)
that there is an wj 2 domL with L(wm ) < L(wj ) such that (� ; N; L; wj ) j=
p and (� ; N; L; wn ) j= q for any wn 2 dom L where L(wm ) < L(wn ) <
L(wj ). We conclude,using the de�nition of satisfactionof ^ together with
S7 and S3, that (� ; N; L; wi ) j= pV q ! pV (q^ pV q);

(A8-V) Supposethat (i) (� ; N; L; wi ) j= pV q ^ rV s. From (i), the de�nition
of satisfaction of ^ and S7, we infer that (ii) there is wj 2 dom L with
L(wi ) < L(wj ) such that (� ; N; L; wj ) j= p and (� ; N; L; wk) j= q for any
wk 2 domL whereL(wi ) < L(wk) < L(wj ), and (iii) there is wl 2 domL
with L(wi ) < L(wl ) such that (� ; N; L; wl ) j= r and (� ; N; L; wm ) j= s for
any wm 2 dom L whereL(wi ) < L(wm ) < L(wl ). Let wn = min (wj ; wl ).
It is easyto seefrom the secondhalf of (ii) and (iii) that (� ; N; L; wo) j= q
and (� ; N; L; wo) j= r for any wo 2 domL whereL(wi ) < L(wo) < L(wn ).
Now, if wj = wl , from the �rst half of (ii) and (iii), there is an wn such
that (� ; N; L; wn) j= p and (� ; N; L; wn) j= r . Alternativ ely, if wj < wl ,
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from the �rst half of (ii) and the secondhalf (iii), there is an wn such
that (� ; N; L; wn ) j= p and (� ; N; L; wn) j= s. Otherwise, (� ; N; L; wn ) j= q
and (� ; N; L; wn) j= s. Many applications of the de�nition of satisfaction
of ^ and _ together with S7 allow us to conclude that (� ; N; L; wi ) j=
pV q^ rV s ! (p ^ r )V (q^ s) _ (p ^ s)V (q^ s) _ (q^ r )V (q^ s);

(A10-G) Assumethat (� ; N; L; wi ) j= G(p ! X p). The de�nitions of satisfac-
tion of G and X imply (i) for any wj 2 domL such that L(wi ) � L(wj ),
(� ; N; L; wj ) j= p implies (� ; N; L; wk) j= p whereL(wk) = L(wj ) + 1. Also
assume(ii) (� ; N; L; wi ) j= p. By mathematical induction on i using (ii)
and (i), we infer that (� ; N; L; wj ) j= p for any wj 2 dom L such that
L(wj ) � L(wi ). Therefore, using the de�nition of satisfaction of G and
S3, we concludethat (� ; N; L; wi ) j= G(p ! X p) ! (p ! Gp);

(A12-Xb eg) From S6, it is clearthat (i) if (� ; N; L; wj ) j= beg then L(wj ) = 0.
Moreover, the de�nition of satisfaction of X says that (ii) (� ; N; L; wi ) j=
X (beg) implies (� ; N; L; wj ) j= beg such that L(wj ) = L(wi ) + 1. Con-
sideringthat (ii) implies (i), we reach a contradiction and concludein this
way that (� ; N; L; wi ) j= : X (beg) due to S2;

(A13-A) According to S8, (� ; N; L; wi ) j= A (p ! q) implies (� ; N; L j ; (L � 1
j �

L)(wi )) j= p ! q for any L j which agreeswith L on the state formulas
satis�ed up to j . Using S3, we can infer that (� ; N; L k ; (L � 1

k � L)(wi )) j= p
implies (� ; N; L l ; (L � 1

l � L)(wi )) j= q, moving in this way the quanti�cation
over behaviours to each instance of the satisfaction relation. Therefore,
basedon S8 and S3, we infer (� ; N; L; wi ) j= A (p ! q) ! (A p ! A q);

(A15-EA) Supposethat (i) (� ; N; L; wi ) j= Ep and (ii) (� ; N; L; wi ) j= AE p is
not true. From (i) and S8, we know that (iii) there is L j which agrees
with L on the state formulas satis�ed up to wi such that (� ; N; L j ; (L � 1

j �
L)(wi )) j= p. Moreover, (ii) and S8 allow us to say that it is not the case
that (iv) there is L k which agreeswith L on the state formulas satis�ed
up to wi such that (� ; N; L k ; (L � 1

j � L)(wi )) j= Ep. But (iv) and S8 show
that there is not an L k such that for every L l which agreeswith L k on
the formulas satis�ed up to (L � 1

k � L)(wi ) and (� ; N; L l ; (L � 1
l � L k)(( L � 1

k �
L)(wi ))) j= p, which contradicts (iii) because(L � 1

l � L k) � (L � 1
k � L) =

L � 1
l � (L k � L � 1

k ) � L = L � 1
l � I � L = L � 1

l � L . Therefore,applying S3 to the
negationof our assumption,we concludethat (� ; N; L; wi ) j= Ep ! AE p;

(A16-EV) Suppose that (i) (� ; N; L; wi ) j= (Ep)V q but (ii) (� ; N; L; wi ) j=
E(pV q) is not the case. From (i), S7 and S8, (iii) there is wj 2 dom L
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with L(wi ) < L(wj ) and L k which agreeswith L on the state formulas
satis�ed up to wj such that (� ; N; L k ; (L � 1

k � L)(wj )) j= p and for every
wk 2 domL whereL(wi ) < L(wk) < L(wj ), (� ; N; L; wk) j= q. In addition,
from (ii), S8 and S7, we seethat for every L l which agreeswith L on the
formulas satis�ed up to wi and every wm 2 domL l with L l (wi ) < L l (wm ),
(� ; N; L l ; (L � 1

l � L)(wm )) j= p and (� ; N; L l ; (L � 1
l � L)(wn )) j= q for any

wn 2 dom L i whereL l (wi ) < L l (wn) < L i (wm ) are not both true. These
hold for L l = L k and wm = wj , but in this case(iii) is contradicted.
Therefore, applying S3 to the negation of our assumption, we conclude
that (� ; N; L; wi ) j= (Ep)V q ! E(pV q);

(A17-AU) Assumethat (� ; N; L; wi ) j= A (p ! X (qU p)). By S8, S3 and the
de�nition of satisfaction of X and U , our assumption is easily shown to
be equivalent to (i) for every L i which agreeswith L on the state formulas
satis�ed up to wi , (� ; N; L j ; wj ) j= p, where wk = (L � 1

j � L)(wi ), implies
in the existenceof an wl 2 dom L j with L j (wk) + 1 � L j (wl ) such that
(� ; N; L j ; wl ) j= p and (� ; N; L j ; wm ) j= q for any wm 2 dom L i where
L j (wk) � L j (wm ) < L j (wl ). Assumein addition that (ii) (� ; N; L; wi ) j= p.
Note that (i) particularly holds for each L n which agreeswith L on the
satis�ed formulas up to and including wi . In thesecases,we can apply (ii)
in (i) and infer that there is an w0

l 2 dom Ln with Ln (wi ) + 1 � Ln (w0
l )

such that (� ; N; L n ; w0
l ) j= p, (� ; N; Ln ; w0

m ) j= q for any w0
m 2 dom Ln

whereLn (wi ) + 1 � Ln (w0
m ) < Ln (w0

k). The de�nition of satisfactionof U ,
X and S3 show that (� ; N; L; wi ) j= A (p ! X (qU p)) ! (p ! XA (qU p));

(A20- 8) Assumefor x 62F ree(p) that (i) (� ; N; L; wi ) j= 8x � p ! q, and (ii) it
is not the casethat (� ; N; L; wi ) j= p ! 8x � q. So, from (i), S4, S3, for
every v 2 cod N and every assignment Nv for � such that Nv(y) = N (y) if
y 6= x or Nv(y) = v otherwise,(� ; Nv; L; wi ) j= p implies (� ; Nv; L; wi ) j= q.
The consequent in this implication is alsoobtained from (� ; N; L; wi ) j= p
in a structural induction argument, due to x 62F ree(p). On the other
hand, we have that (� ; N; L; wi ) j= p but (� ; Nv; L; wi ) j= q is not true for
somev, Nv, due to (ii), S4, S3. Therefore,we reach a contradiction and
concludethat (� ; N; L; wi ) j= 8x � (p ! q) ! (p ! 8x � q);

(A22-EQ) Assumethat (� ; N; L; wi ) j= (t1 = t2). Consequently, for a given for-
mula p and any formula q, (� ; N; L; wi ) j= pf qnt1g implies (� ; N; L; wi ) j=
pf qnt2g. This is proved in detail by structural induction on the notions
of interpretation and satisfaction basedon the de�nition of substitution
but is omitted here. Applying S3 twice, we concludethat (� ; N; L; wi ) j=
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(t1 = t2) ! (pf qnt1g ! pf qnt2g);

(A23- 9V ) Supposethat x 62F ree(q) and (i) (� ; N; L; wi ) j= (9x � p)V q and (ii)
(� ; N; L; wi ) j= 9x � (p)V q is not the case. From (i), S7 and S4, there is
wj 2 domL with L(wi ) < L(wj ), v 2 cod N and assignment Nv with the
usual de�nition such that (� ; Nv; L; wj ) j= p and for every wk 2 dom L
where L(wi ) < L(wk) < L(wj ), (� ; N; L; wk) j= q. In addition, from (ii),
S4 and S7, for every v0 2 cod N , assignment Nv0 with the usual de�ni-
tion and every wl 2 dom L with L(wi ) < L(wl ), (� ; Nv0; L; wl ) j= p and
(� ; Nv0; L; wm ) j= q for any wm 2 dom L where L(wi ) < L(wm ) < L(wl )
are not both true. Note that this is equivalent to universally quantifying
Nv only in the �rst half of the sentencebecausex 62F ree(q). In particular
(iii) holds for Nv0 = Nv and wl = wj but in this case(ii) is contradicted.
Therefore, applying S3 to the negation of our assumption, we conclude
that (� ; N; L; wi ) j= (9x � p)V q ! 9x � (pV q);

(A24-EQG) Assumethat (� ; N; L; wj ) j= (t1 = t2) for t1, t2 free from any
attribute symbol. In particular, for any wi 2 dom L such that L(wj ) �
L(wi ), (� ; N; L; wi ) j= (t1 = t2), due to S2, [[t1]]� ;N (wi ) = [[t1]]� ;N (wj ) and
similarly for t2. From the de�nition of satisfaction of G and S3, we con-
clude that (� ; N; L; wi ) j= (t1 = t2) ! G(t1 = t2);

(A26- 8A) Assumethat (� ; N; L; wi ) j= 8x � A (p). According to S4, this means
that for every v 2 cod N and every assignment Nv for � such that Nv(y) =
N (y) if y 6= x or Nv(y) = v otherwise, (� ; Nv; L; wi ) j= A p. Now, from
S8, we infer that for any L j which agreeswith L on the state formulas
satis�ed up to wi , (� ; Nv; L j ; (L � 1

j � L)(wi )) j= p. Reversing the order of
theseuniversal quanti�cations over Nv and L j and applying S8, S4 and
S3 in this order, we concludethat (� ; N; L; wi ) j= 8x � A p ! A (8x � p).

It remainsto be shown that, if a set of sentencesis related to a sentenceby
an entailment of M SBTL, then they are also related by the corresponding se-
mantic consequencerelation. That is, 	 ` � p implies 	 j= � p. Not surprisingly,
we useour proof calculusto decomposethis problem. Assumethat 	 ` � p. The
faithfulness condition in De�nition 2.2.6 says that there is a derivation (D; p)
such that (D; p) 2 Pr � (	 ; p). We proceedby structural induction:

BASE CASE: Characterisedby derivations consisting of a single step, where
D = f g. According to 2.2.6,we only needto examinethe following case:

p 2 Ax(�) : Here, 	 = f g. It is shown above that (� ; N; L; wi ) j= � p for
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any � , N , L and wi 2 dom L whenever p 2 Ax(�). Hence,(� ,N ,L,
wi ) j= � q for any q 2 	 implies (� ; N; L; wi ) j= � p, i.e., 	 j= � p;

Note that there is no needto examineother basecases.For, if p 2 	, 	 6=
f g and then D 6= f g due to the constraint in the faithfulness condition.
If p 62Ax(�) [ 	 and D = f g, (D; p) 62Pr � (	 ; p) due to the minimalit y
of Pr � (	 ; p).

INDUCTIVE STEP: Characterisedby derivationsconstructedout of many steps.
Since(D; p) 2 Pr � (	 ; p) for someD 6= f g, this must be true becauseof
the third casein the de�nition, due to the minimalit y of Pr � (	 ; p). This
meansthat the following must be the casefor some� = f (� i ; pi )j� i [ f pi g �
G(�) g: (i) D = f (di ; pi ) 2 Pr � ( i [ � i ; pi )j i � 	 ; 9c 2 � � c = (� i ; pi )g
and (ii) � ` � p. Since our proof calculus is given in Hilbert-style, all
the � i s above have to be empty and can be ignored. By the inductive
hypothesis, from (i) we obtain  i j= � pi and becauseof [  i � 	 and
the monotonicity of j= � , we conclude(iii) 	 j= � pi . We showed above
that each inferencerule preserves validit y. So, from (ii) we obtain (iv)
f pi j9� i � (� i ; pi ) 2 � g j= � p. The transitivit y of j= � allows us to link (iii),
(iv) and concludethat 	 j= � p.

The above holds for any derivation D such that (D; p) 2 Pr � (	 ; p). Therefore,
becauseof the faithfulnesscondition, we can concludethat 	 ` M S B T L

� p implies
	 j= M S B T L

� p. (M SBTL Soundness)

Theorem 2.9.4 M SBTL is a logical system.

Proof: The signatures of M SBTL determine a category. The morphisms in
this categoryare structure preservingin the sensethat the components of each
signaturearemappedaccordingly. The proof that SigM S B T L is a categoryis then
developed in a way analogousto Theorem2.3.2.

The entailment system of M SBTL is de�ned by a proof calculus where
weakening and distributivit y are logical. So,as shown in Section2.3, the prop-
ertiesof re
exivit y, monotonicity and transitivit y of full entailment relations are
automatically obtained as well as strong structuralit y due to the format of our
axiom schemas.Theseensurethat M SBTL is a full entailment system.

We de�ned a model theory for M SBTL in Section 2.8. The collections
of such models de�ne categoriesas claimed in Proposition 2.9.1. In turn, they
support an institution accordingto Lemma 2.9.2.

Entailment and institution obeya soundnesscondition accordingto Lemma
2.9.3, showing that M SBTL is a logic. Togetherwith the proposedproof cal-
culus, M SBTL constitutes a logical system. (M SBTL Logical System )
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The following result is of a negative nature:

Theorem 2.9.5 M SBTL is not complete.

Proof: Weprove this theoremin a way studied in detail by Abadi (1989),showing
that the sentences true in the standard model of (Peano) arithmetic can be
mapped into valid sentencesof our temporal logic. Becausearithmetical truth
is undecidable,there is a true sentence such that neither itself nor its negation
can be proved (G•odel 1931),this result is transferedto the temporal logic.

Considera sentence p written in the languageof arithmetic presented in
Figure 2.2. A (recursive) translation of p into our temporal logic can be de�ned
as �(p) def= p ^

V
f qjq 2 Ax(TA )g whereTA is the speci�cation in Figure 2.1613.

Note that �(p) is well-de�ned becausethe languageof PA is included in that
of TA . Alternativ ely, we could have also chosendistinct symbol namesand
connectedthese theories from distinct logics by a functor, in which caseour
argument would be similar to the above.

We know that A c = (N , 0U , sU , + U , � U ) is the standard model of the-
ory PA . On the other hand, according to De�nition 2.8.2, any model of TA
must have the following structure: � = (T, A t , f N : N ! � g;f g) for A t =
fN ; (0U ; sU ; + U ; � U )g and T = (� 0, � , � , �). The rigid constant and function
symbols speci�ed through axioms(10.1) to (10.6) are interpreted as in the clas-
sicalcasebecausethis setof axiomsis the sameof Figure 2.2. In addition, axiom
(10.7) guaranteesthat, in any behaviour L 2 �, each element of N denotedby
the attribute symbol n is the N -image of somew 2 dom L. Moreover, axiom
(10.8) guaranteesthat each w 2 domL will be mapped to a unique element of
N denotedby n. Therefore,N is a bijection betweendomL and N . BecauseL
itself is a bijection betweenits domain and N , N is isomorphicto N . Picking �
asany in�nite set producesa model for TA . We infer in this way that A c j= PA p
i� A t j= PA p i� � j= TA � (p), this last biconditional being justi�ed by the de�nition
of � and the fact that sort symbols are rigid.

Supposethat TA j= �(p) impliesTA ` �(p) for every sentencep. Applying
the de�nition of our interpretation and the previousassumptionto somep such
that A c j= p, this would meanthat we have a method to determinewhether or
not a sentence is true in the standard model of arithmetic, but this contradicts
the incompletenessresult developed by G•odel. We have shown that M SBTL is
incomplete. (M SBTL Incompleteness )

13The idea behind this speci�cation is to assignat each time instant the 
exible symbol n
to a unique natural number and to establish in this way a bijection betweenthe denotation of
nat and N . Axiom 10.7 says that in the beginning of time n = 0 and, for each element x of
sort nat, it will be assignedto n eventually . Axiom 10.8 guarantees that the next value of n
is always the successorof its current value.
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Theory TA
sorts nat
constan ts 0 : nat
operations s : nat ! nat; + : nat � nat ! nat; � : nat � nat ! nat
attributes n : nat
axioms x; y : nat14

: (0 = s(x)) (10.1)
s(x) = s(y) ! x = y (10.2)
x + 0 = x (10.3)
x + s(y) = s(x + y) (10.4)
x � 0 = 0 (10.5)
x � s(y) = x � y + x (10.6)
beg ! n = 0 ^ F(n = x) (10.7)
n = x ! X (n = s(x)) (10.8)

End

Figure 2.16: Temporal �rst-order theory of Peanoarithmetic.

It is important to stressthat the negative result above only holds for the
interpretation structures we have chosen here. It may be possible to �nd a
slightly di�erent semantics for our logic so that it becomescomplete. Andr�eka
et al. (1995)have applied CorrespondenceTheory asproposedby van Benthem
(1984) to map �rst-order temporal logic into classicallogic, which is complete.
Thus this result may be transfered to the temporal framework. In our case,
it appearsto be necessaryto study in detail �rst if the propositional fragment
of the logic above is medium completebeforeproceedingwith the study of the
�rst-order framework. Research in this direction is under way.

Concluding this section,we return to Proposition 2.7.4. We show that the
inferencerule proposedtherein is admissible in M SBTL. As a corollary, we
deducethat a logical systemis obtained as a result of adding such rule to the
proof calculusof M SBTL.

Theorem 2.9.6 (Admissibilit y of INTR O) Assumethat s 2 Sort(�), t 2
Attr (�) with type(t) = � ! s and � 2 Act(�) with type(� ) = s � s for a given
� in obj SigM S T B L . The following inferencerule is admissiblein M SBTL:

(INTR O) 1: IRR 4: APR OG
2: STAB 5: FREE
3: TERM 6: LIM

8x � (F(p[x]) ! 9y � F(y � x ^ p[y])) ! 8x � : F(p[x])

14The variables x and y of sort nat appear implicitly quanti�ed in the subsequent axioms.
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Proof: We assumegiven a signature � such that s 2 Sort(�), t 2 Attr (�) with
type(t) = � ! s and � 2 Act(�) with type(� ) = s � s. We write x � y for
� (x; y). A classi�cation Class(�) for � is also assumedto exist. We have
to show that, for any frame T = (� , � 0, � , �), assumingthat the premisesof
INTR O are valid in T, the conclusionis alsovalid in T.

From (2), it is easyto seeby applying the rule of temporal generalisation
R2-G that FG(8x; y � x � y ! X (x � y)) is the case.Conjoining this sentence
to (3) and relying on the distributivit y of both FG and 8 over conjunction,
we concludethat the symbol � will eventually have a rigid interpretation in
any model � basedon T. We call the world from which this becomestrue as
w0 2 domL, for each L 2 �.

From (4), it is not di�cult to derive the following sentence:

G(8x � t = x ! X (t = x _ t � x)) ! 9x � FG(t = x) (2.9.4)

Supposethat for somemodel � = (T, U, G, A), there is an in�nitely decreasing
sequenceof valuesfrom sU , S = ht0; t1; : : :i , which are related by � U . We are
going to show basedon S that � cannot exist while satisfying the premisesof
INTR O and (2.9.4) in particular.

Sinceour assumptionguarantees that (1) is true in � , we can infer that
(a) t i 6= t i +1 , for every i � 0. Moreover, from (5), for every world wi of a
�xed behaviour L i such that L i (w0) < L i (wi ) and [[t]]� ;N (wi ) = tL i (wi )� L i (w0 )� 1,
we know that there is another behaviour L i +1 with a past history up to si

equivalent to that of L i such that for wi +1 2 domL i +1 with L i +1 (si +1 ) = L i (wi )+
1, [[t]]� ;N (wi +1 ) = tL i +1 (wi +1 )� L i (w0 )� 1. This shows that the antecedent of (6) is
satis�ed, so we also obtain basedon the discretenessof S and L that (b) there
is an L 2 � such that 8si 2 domL � L(w0) < L(si ) ! [[t]]� ;N (wi ) = tL (wi )� L (w0 )� 1

for any assignment N for Class(�). The antecedent of (2.9.4) is satis�ed from
s1 onwards due to (b) and the rigid character of � U , but the consequent of this
implication is never obtained in L since the value of t keepschanging forever,
accordingto (a) and (b). In this way, our assumptionof an in�nitely decreasing
chain of values from sU related by � U generatesa contradiction. Therefore,
there is no such an in�nite sequencein any � basedon T.

Supposethat the antecedent of the conclusionis the casebut the conse-
quent is not. From the latter, we know that (i) there is at least oneelement in
sU for any � basedon T containing U. From the former, we know that (ii) for
every t i 2 sU , there is a t i +1 2 sU such that t i +1 � U t i . From (i) and (ii), we can
infer that there is an in�nitely decreasingsequenceof valuesfrom sU related by
� U , but this is a contradiction. Hence,the conclusionof INTR O is valid in T.
We concludethat INTR O is admissible. (Admissibilit y of INTR O)
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Corolary 2.9.7 (Soundness of M SBTL + ) M SBTL+ is sound.

Proof: Basedon Lemma 2.9.3, we only need to show that INTR O preserves
validit y. But this is preciselywhat Theorem2.9.6states. Therefore,M SBTL +

is sound. (M SBTL+ Soundness)

2.10 Summary and Related Work

We beganthis chapter arguing in favour of a proof-theoretic approach to rig-
orous software development. The many stepsof the development processwere
examinedand the bene�ts of adopting this viewpoint were outlined. A number
of authors, such asLehman et al. (1984),Turski and Maibaum (1987),Fiadeiro
et al. (1991)and de Queiroz(1990)appear to sharea similar view, which is not
original to our work.

Afterwards, we presented de�nitions of many general logical structures
which appear to provide an adequatefoundation for our proof-theoretic stud-
ies. In particular, we stressedthe fundamental role of category theory as a
meansof developinga software development theory relatively independent from
the adopted logical systemas well as of facilitating the transposition of results
betweenrelated systems.Generallogicshave beenextensively studied in the lit-
eratureby Fiadeiro and Sernadas(1988),Goguenand Burstall (1992),Meseguer
(1989), Fiadeiro and Maibaum (1993) and Cerioli and Meseguer(1997) among
others. On top of these studies we have introduced a minor but nevertheless
necessaryassumptionof syntactic vocabulary closureand a practical de�nition
of proof-calculuswhich seemsto be a good alternative if comparedto the com-
plicated categoricalde�nition adoptedby Meseguer(1989).

A seriesof entailment systemswas subsequently de�ned culminating in
the introduction of a new many-sorted, �rst-order, branching time logical sys-
tem with equality, which appearsto be adequatefor designingextensiblesoft-
ware systems. We examined in detail the proof-theory of fragments of this
system basedon their Hilbert-style de�nitions, providing realistic application
examples,and �nally assessedother characteristicsalso related to their model-
theory, namely soundnessand completeness.From the proof-theoretic side, it
is unfortunate to have only a Hilbert-style proof-calculus for our connectives
becausemore elegant proof-theoretic techniquessuch as cut elimination cannot
be e�ectively applied in this way. From the model-theoretic side,we discovered
that the adopted semantics does not yield a completenessresult even though
this may be possiblein a slightly changedframework. Theselimitations do not,
however, precludethe practical application of our logical systemand in fact it
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is not yet clear if the solution of theseproblemsmay lead to the development of
a useful framework.

Perhaps the major contribution of this chapter is the proposed logical
systemand the corresponding designprinciples developed to support the spec-
i�cation and veri�cation of software systems. A substantial number of related
formalisms with their own principles has already appeared in the literature.
Chandy and Misra (1988) have developed UNITY, which is not strictly speak-
ing a temporal logical system but supports the design of concurrent systems.
UNITY lacks an elegant treatment of naming, which is resolved in terms of set
theoretic operationson the symbolsof each presentation and doesnot support in
this way modulariseddesign,sincenameclashesmay occur in combining speci�-
cationswhich weredeveloped in isolation. This is treated hereby the categorical
constructionsadopted following Fiadeiro and Maibaum (1992). Among tempo-
ral logical formalisms,TLA (Lamport 1994)and the linear time logic proposed
by Manna and Pnueli (1989)arecloseto ours,although they werenot developed
with the sameassumptionsin mind and thus do not provide a proof-theoretic
account to each logical symbol, asthe enablednessconnective demonstrates.We
believe that such a kind of de�nition is fundamental in rigoroussoftware devel-
opment and, in particular, when automating the process.Another related logic
is CTL � (Emerson 1990), which is a propositional branching time logic where
the branching connectivehasa slightly distinct meaning. Wehaveprovided both
a functor showing how to interpret CTL � theories into our formalism and the
rationale justifying the choice of a distinct modality meaning. Concerningthe
designprinciplesproposedherein the form of derived inferencerules(apart from
the adopted categoricalconstructions), the anchored induction rule appearsto
bequite a standardway of dealingwith the veri�cation of safety properties. The
lattice rule, on the other hand, normally lacks either methodological guidance
or an axiomatic basisupon which it can be applied. We are only aware of other
works hereinboth problemsare treated just for the caseof rigid relation symbols
in terms of non standard methods. We shall have the opportunit y to exemplify
the application of our principles throughout the following chapters.



Chapter 3

Designing Op en Recon�gurable
Systems

Distributed systemshave provided one of the most pertinent frameworks for
organising separateindependently produced software artifacts. Essentially , a
distributed systemconsists in a set of loosely interconnectedsoftware compo-
nents. For instance, a set of proceduresput together to run as a sequential
program cannot be regardedas a distributed systemunlessthere are methods
supporting the replacement of someof thesecomponents at run time and also
their executionin separateaddressspaces.Clearly then, the de�nition above is
not very informative and has to be complemented by a model which speci�es
how components are connectedto each other and interact amongthemselves.

Distributed systemmodelscomein di�erent 
a vours. First of all, oneneeds
to considerwhether interaction is to be supported by sharedor isolatedentities.
Shared memory allows distinct components to have read and perhapswrite ac-
cessto a commonstorage. This is peculiar to the development of protocols for
ensuringdistributed memory consistency(Raynal and Mizzymo 1993). Shared
control allows distinct components to observe the sameevent simultaneously.
A family of so-calledcoordination languagesis basedon this notion (Ciancarini
and Hankin 1996). Interaction basedon sharing is necessarilysynchronous. On
the other hand, messagepassingis not necessarilyso. Messagesare transmitted
in asynchronousmode if and only if it is not possibleto place internal bounds
on communication delays nor on the relative speedof each component. Other-
wise, the mode of interaction is consideredto be synchronous. In modelsbased
on messagepassing,wherein interaction is directed, there is also the issueof
deciding the number of participants allowed in each interaction. If there must
be only one recipient for each message,we say point-to-point communication is
supported. At the opposite extreme, broadcasting is characterisedby the fact
that each messageis always distributed to all the components of the system.

93
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Distributed systemsbasedon thesemodelsmay support extensibility in an
e�ective manner if they are alsoopen and recon�gurable. A distributed system
is said to be recon�gurableif and only if the interconnection topology of its com-
ponents, or more simply its con�guration, may vary with time. Moreover, the
systemis said to be open whenever it may eventually interact with an environ-
ment over which little if any control is retained. Becausefew assumptionscan
be made about the environment and the dynamic con�guration of the system,
it becomeseasierto support changeswhich lead to extended functionality or
structure. As we arguedin the introduction, sinceopennessand recon�gurabil-
it y seemto enforceextensibility, it appearsto be reasonableto anticipate their
use and introduce explicit support to thesenotions at more abstract levels of
the development processsuch as when performing software design.

Designingopen recon�gurable distributed systemsin a rigorous way does
not appear to bean easytask. For example,Abadi and Lamport (1994)adopted
the temporal logic TLA in a rely-guarantee style to deal with openness,but left
recon�gurabilit y completelyuntreated. On the other hand, a whole�eld of study
was uncoveredwhen Milner et al. (1992) proposeda synchronousvalue passing
processcalculusin which namesareprimitiv e and canbepassedaround to allow
the respective processesto recon�gure. However, they have preferred to leave
the notion of opennessuntouched. Both notions were addressedby Agha et al.
(1994) in terms of the so-calledactor model, which is basedon asynchronous
messagepassing,but at a level of abstraction very closeto implementation and
without concernfor rigorousveri�cation of properties.

A model of distributed systemsmay beexpressively rich enoughto capture
openness,recon�gurabilit y and other notions that support extensibility. We
believe this to be the caseof the actor model. This is why we study in this
chapter how to provide explicit support for this model usinga proof calculusthat
extendsour work of Chapter 2. Manna and Pnueli (1983) have alsoapplied, at
lower levelsof abstraction, this ideaof particularising a temporal logical system.
In particular, we follow the terminology proposedby Fiadeiro et al. (1991) and
claim to give a temporal proof-theoretic semantics for the interaction primitiv es
of the actor model. We provide methods and principles to support specifying,
composing and reasoningabout actor communities. We also show that other
messagepassingmodesof interaction and other notions supporting extensibility
may be treated in terms of actors. This open recon�gurable systemsdesign
initiativ e basedon actors initiated by Duarte (1997b) is indeedpossibledue to
a result of Koymans (1987), who �rst showed that by adopting purposebuilt
temporal logicsonecan treat a variety of messagepassingmodesof interaction.
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We proceedby introducing the actor model and discussingsomerelevant
issuesin the design of the respective temporal proof-calculus. Subsequently,
we describe our approach to the speci�cation and veri�cation of actor systems,
illustrating the technicalities involvedby meansof a simpleexample.A summary
and a comparisonwith related work appear in the last section.

3.1 Issues in the Design of a Pro of Theory for
the Actor Mo del

Sincethe pioneeringwork of Hewitt and Baker (1977)on the foundationsof con-
currency, a promising model of open distributed systemshas been developed,
initially by Clinger (1981) and lately by Agha (1986), Talcott (1996b)and oth-
ers. The so-calledactor model regardsdistributed systemsas communities of
objects with encapsulatedstate which may only be changedby performing local
computations. Messagepassingbetweenactors is bu�ered, point-to-p oint and
asynchronous, basedon a localisednaming scheme. As a result of processing
messages,new concurrent actors can be created, local computations can occur
and actor namescan be communicated.

Considering the characteristics above, it seemsto be a natural research
direction to abstract from previous work in which the model was realised in
diverseprogramming languagesand semantic domains in order to examinethe
step-by-step development, and here in particular the design,of open recon�g-
urable systemsin terms of actor communities. Agha (1986) identi�ed the basic
primitiv esrequired to support the model and outlined a genericoperational se-
mantics for actor languages. In (Agha et al. 1997), the operational semantics
of a completelanguagewas developed along with criteria for dynamically com-
posing interacting actor components. Alternativ e semantic domainsde�ned in
terms of the inferencerules of rewriting and linear logic werestudied by Talcott
(1996a),Darlington and Guo (1995), respectively. All theseworks have focused
on describingin an operational manner the behaviour of actor systems.

In Chapter 2, we de�ned a logical systemwhich appearsto be expressive
enoughto support the designof actor systems.State and change,for instance,
can be represented by setsof attribute and action symbols. Moreover, creation
and naming may be dealt with in the usual way studied by Ehrich et al. (1988),
in terms of the �rst-order featuresof the logic. This is to say, a distinguished
sort symbol denoting object namesis consideredto be part of every signature
and all the attribute and action symbols are regardedto be parameterisedby
the respective sort, extending the originally provided speci�cations. To avoid
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con
icts betweenthe creation of new actors and the satis�abilit y of Barcan for-
mulas, every actor speci�cation may carry an auxiliary existential boolean at-
tribute symbol. According to this approach, objects that have not beencreated,
i.e., their respective attribute is equalto false,do not play any role, paraphrasing
America and de Boer (1996).

Concerningthe bu�ered, point-to-p oint, asynchronousmode of interaction
betweenactors,a faithful approximation can be de�ned by introducing another
set of logical symbols in each speci�cation and providing an extendedaxioma-
tisation which dependson thesenew symbols. In particular, becausethe actor
model requires the delivery and consumption of a messageto be guaranteed
whenever it becomespossibleoften enoughfor the target actor to deliver such a
functionality, fairnessrequirements which demandspecifying when theseevents
may occur as it is impossibleto determine a priori how the environment will
evolve, the full expressivenessof our branching time logic has to be used.

Consideringthis rationale, actor speci�cations should look like Figure 3.1.
Therein, bu�er cellsare speci�ed which dynamically allocatea new cell for each
stored integer. Attribute symbols represent the actor state whereasmessages
and local computations are represented by action symbols. The connectivesE,
X , F are aspreviouslyde�ned. In Axiom (11.9), for instance,X is usedto state
that, if a messageput(v) is consumedby the last cell of the bu�er (lst = T ), in
the next instant another cell containing the valuev will be createdand linked to
the current one (new( item; n; v) ^ link(n)). Subsequently, the bu�er will have
recon�gured accordingly. On the other hand,  is a new de�nable temporal
connective which is required in stating that a property holdsonly if precededby
the occurrenceof another property. Axiom (11.13) determinesthat neither of
the two events abovehappenunlessthe appropriate cell consumesa put message
�rst. We shall continue to explain this examplein the following sections.

3.2 An Axiomatisation of the Actor Mo del

3.2.1 Represen ting Actors

We usetheory signaturesto de�ne the symbols that can be usedin writing each
speci�cation. Speci�cations, in turn, consist of �nite sets of axioms de�ning
theory presentations. Both notions are the sameas explained in Chapter 2,
but here we particularise even further the structure of M SBTL signaturesto
cater for the peculiarities of the actor model. We alsousea shorthand notation
which will facilitate the exposition of the formalism. Theory signaturesfor actor
speci�cation are de�ned as follows:
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Actor BufferCell
data typ es addr; bool; int (T ; F : bool)
attributes val : int; nxt : addr; void; lst; up : bool
actions nil ; item(int) : lo cal + extrn birth ;

go; cons; link (addr) : lo cal computation ;
put (int); get(addr) : lo cal + extrn message;
reply(int) : extrn message

axioms k; n : addr; v : int; x; y : bool
nil ! void = T ^ lst = T ^ up = F (11.1)
item(v) ! val = v ^ void = F ^ lst = T ^ up = F (11.2)
nil _ item(v) ! X (go) (11.3)
go ! X (up = T ) (11.4)
go^ val = v^ void = x^ nxt = n^ lst = y ! X (val = v^ void = x^ nxt = n^ lst = y) (11.5)
cons^ nxt = n ^ lst = x ^ up = y ! X (void = T ^ nxt = n ^ lst = x ^ up = y) (11.6)
link (n) ! X (nxt = n ^ lst = F) (11.7)
link (n) ^ val = v ^ void = x ^ up = y ! X (val = v ^ void = x ^ up = y) (11.8)
put (v) ^ lst = T ! X (9n � new (item; n; v) ^ link (n)) (11.9)
put (v) ^ lst = F ^ nxt = n ! X (send put; n; v ()) (11.10)
get(n) ^ void = F ^ val = v ! X (send reply; n; v (^ )cons) (11.11)
get(n) ^ void = T ^ lst = F ^ nxt = k ! X (send get; k; n ()) (11.12)
9n � new (item; n; v) _ link (n)  put (v) ^ lst = T (11.13)
send reply; n; v (_)cons get(n) ^ val = v ^ void = F (11.14)
send put; k; v ( )put (v) ^ nxt = k ^ lst = F (11.15)
send get; k; n ( )get(n) ^ nxt = k ^ void = T ^ lst = F (11.16)
up = T ! FE (deliv (put ; v)) ^ FE (put(v)) ^ FE (deliv (get; n)) ^ FE (get(n)) (11.17)

End

Figure 3.1: Speci�cation of integer bu�er cells.

De�nition 3.2.1 (Actor Signature) An actor signature � = (�, A , �) is a
triple of disjoint and �nite families of symbols such that:

� � = (S, 
) is a universesignature, i.e., S is a set of rigid sort symbols and

 is an S�

f in
� S-indexedfamily of rigid function symbols1. We alsorequire

that addr2 S, representing the sort of mail addresses(or actor names);

� A (or A l ) is an S�
f in

� S-indexedfamily of 
exible attribute symbols;

� � = (� e; � l ; � c) is a triple of S�
f in

-indexed families of action symbols such
that (� e [ � l ) \ � c = f g. � c is a set of local computation symbols. The
elements of � e and � l represent, respectively, events to be requestedfrom
the environment and provided locally2. Each of these two sets contains
distinguishedsub-setsof messageand birth symbols, e.g. � l � � lb and � lb.

We write � ! s-indexed families of signature symbols as if s were their single
index. Givena setor sequenceof such symbolsX , wewrite asX hs1 ;:::;sn i ;s the sub-

1We usually consider that the enumerated constants are all di�eren t from each other.
2Becauseactors may self-addressrequests,� e and � l should not be disjoint in general.
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set or sub-sequenceof X containing symbols of type hs1; : : : ; sn i ! s only. To
make referenceto speci�c setsof signaturesymbols, we operate with subscripts
to denoteoperations on sub-sets.For instance,� eb \ � lb is written as � eb\ lb.

In the examplespeci�cation of Figure 3.1, addr, bool and int are the sort
symbols that constitute, together with their implicitly speci�ed constants and
operations,the universesignature�. Clearly, the sort of mail addressesaddrhas
to be part of every signature. Otherwise,somespeci�ed actorswould be useless
without the abilit y of exchanging messagesor creating new actors. Still in the
example,val (current value), nxt (next cell address),void (consumedcontent),
lst (last cell) and up (live cell) are the attribute symbols in A . In the particular
terminology of the actor model, they are called acquaintances, which may be
determinedat creation time or in performing local computations.

The structure of the set of action symbols di�ers from those of Sernadas
et al. (1995), Fiadeiro and Maibaum (1992), who advocate similar logics, and
also from our de�nitions in the previouschapter. Each actor speci�cation may
guarantee the occurrenceof externally required events and may determinethat
the occurrenceof someevents is requiredfrom the environment. Actor speci�ca-
tions may alsode�ne local computations. Becauseof thesedistinctions, the setof
action symbols is divided into � l , � e and � c, respectively. The �rst two of these
are partitioned into sub-setsof symbols to represent messagesand births, � e� eb

and � eb for instance. Actors interact via asynchronously transmitted messages,
denotedby the symbols in � (l � lb)[ (e� eb) , which are usedin many di�erent ways.
For instance,put(v) represents the consumptionof a messageput carrying v as
its contents and send put; n; v () speci�es that the samemessageand contents
are transmitted to an object whosemail addressis n. The distinguished uses
of signaturesymbols alsoapply to the creation of actors, through the primitiv e
new and the subsequent occurrenceof birth actions in � lb[ eb. All theseevents
can only occur carrying a �nite number of acquaintancesand are exempli�ed by
the action symbols in Figure 3.1.

As is usual in a proof-theoretic approach, cf. Fiadeiro et al. (1991),
Wieringa et al. (1995), we extend signatureswith somenew logical symbols.
The situation here resembles the use of hidden symbols in algebraicspeci�ca-
tions (Ehrig and Mahr 1985). Therein, the speci�er may need to use an ex-
ternally unavailable languageto specify complex data types. Herein, we usea
simpler languageto specify complex patterns of behaviour presented by every
actor, de�ned in terms of a morecomplexlanguage.This extendedlanguagewill
be usedto provide an implicit proof-theoretic semantics for the actor primitiv es
and that is why it should not be required from the speci�er of each signature.
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De�nition 3.2.2 (Extended Actor Signature) Given an actor signature�
= (�, A l , �) such that � = (S, 
) and � = (� e, � l , � c), the triple � � = (� �,
� A , � �) is said to be the extended signature of � if and only if:

1. � � = (S [ f boolg, 
 [ f T bool; Fbool; NOT bool! boolg);

2. � A = (A l , A i , A s, A d), such that (i) for each c 2 � lb of sort hs1; : : : ; sn i
there is an init c 2 A i hs1 ;:::;s n i ;bool

; (ii) for each c 2 � (e� eb)[ (l � lb) of sort
hs1; : : : ; sn i there is a sentc 2 A shs1 ;::: ;s n i ;bool

, and (iii) for each c 2 � l � lb of
sort hs1; : : : ; sn i there is a delivdc 2 A dhs1 ;::: ;s n i ;bool

. All the symbols in the
respective components of � A are due to (i), (ii) and (iii);

3. � � = (� e, � out , � l , � in , � c, � r cv), where (i) for each c 2 � e of sort
hs1; : : : ; sn i there is an outc 2 � outhaddr;addr;s 1 ;:::;s n i

; (ii) for each c 2 � l of sort
hs1; : : : ; sn i there is an inc 2 � in haddr;addr;s 1 ;:::;s n i

, and (iii) for each c 2 � l � lb of
sort hs1; : : : ; sn i there is a rcvc 2 � r cvhs1 ;:::;s n i

such that � (in [ out )\ r cv = f g
and that inc = outc if and only if c 2 � e\ l . All the symbols in the respective
components of � � are due to (i), (ii) and (iii).

That is to say, the original universesignature is extendedwith a boolean sort
symbol, new attribute symbols are provided to deal with the existenceof actors
and bu�ering of messages,and new action symbols are introduced to handle
creation and interaction. Hereafter, we will not make any distinction between
extendedsignaturesand actor signatures.

A central feature of actors is interaction. Here, it is simulated using the
action symbols outc and ind which happen simultaneously for any c 2 � e and
d 2 � 0

l belonging to the actor communities, populations of objects complying
with the same speci�cation, requesting and providing the event respectively.
These symbols correspond either to the dispatch of a messageor the request
of an actor birth. The occurrenceof theselogical actions plays the role of the
interaction steps of Talcott (1996b). For an interaction represented by c be-
tweenactors of the samecommunity, hencerequired and provided locally and
member of � e\ l , the occurrenceof the new actions above is obliged to be syn-
chronousby the secondconstraint in (3.iii) of De�nition 3.2.2. Otherwise, this
synchronisation must be supported by the existenceof a morphism identifying
thesesymbols as sharedby the distinct signatures,as discussedin Section3.4.
Asynchrony in messagetransmissionis guaranteedby forcing outcjind to happen
strictly beforercvd, which in turn has to occur strictly befored itself. The two
last symbolscorrespond to the occurrenceof the delivery and consumptionof the
message,respectively. Finally, (double) bu�ering is captured by the attribute
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delivdd (sentc) becomingtrue for somevalueswhenever thesevaluesare deliv-
ered(sent) in a message.Of course,thesenew symbols do not explicitly appear
in speci�cations but their behavioural constraints will have to be captured by
our axiomatisation. Also, accordingto the de�nition above, ill formed messages
are not allowed | as action symbols, messagesalways have a locally correct
representation at the sender| and dispatched messageswhich do not belong
to the languageavailable to the target actor are never delivered.

Following America and de Boer (1996), we considerthat in a given point
in time it is only possible to deal with the existing actors at that moment.
Accordingly, an object will have someinit c attribute equalisedto T(R UE) for
somesequenceof terms ~vc only if the occurrenceof an action inc( ~vc), c 2 � lb,
gives rise to its birth. The structure of communities of actors which comply
with the samespeci�cation, each of which having a distinguishedmail address,
is de�ned below:

De�nition 3.2.3 (Actor Comm unit y Signature) Given a signature � =
(�, A , �), a community signature � P is obtained by \parameterising" � with
sort P. That is, � P def= (S [ f Pg, 
); A P is obtained from A by adding the
parametersort P to each of its attribute symbols; and � P is obtained from � by
adding the parametersort P to each action symbol in � e, � l , � c and � r cv. The
other symbols of � remain the samein � P.

Clearly, the parameter sort P of every community should be addr. Indeed,
as identi�ed by Talcott (1996b), actor semantics should be parameterisedby
sets of actor addresses. Due to our de�nition, a new argument is added to
the appropriate signaturesymbols and its instanceswill be actor names.In this
way, the basicoperationson object referencesidenti�ed by America and deBoer
(1996),equality testand dereferencing, aresupported. However, signaturesalone
do not support a modular design discipline, obliging the entire structure of
complex systemsto be represented as single entities. The required meansof
composition shall be studied in Section3.4.

Due to the parameterisationof signaturesby addr, we are allowed to adopt
the usualobject-basednotation of pre�xing the nameof an object to the logical
expressionspertaining to it. In this way, we can move parametersoutwards and
write p(n; ~vp) as n:p( ~vp) for any attribute and action symbol p. This lifts in a
compositional manner to all the expressionsin each language. Adopting this
convention, for each pair of formulas p and q, say, we have n:p^ n:q � n:(p^ q).
Sentencesof this kind are called global as opposedto the local oneswhich have
the focusactor striped out. Assumingthat n, ni 2 Term(�) addr, the usualactor
primitiv esde�ned below are alsoadmissiblein speci�cations and proofs:
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For in f ormula reads represents
| | n:init initialisation

W
f9 ~vc � c(n; ~vc)jc 2 � l b g

~vc Term(�) n1:new (c;n2; ~vc) actor creation
outc(n1; n2; ~vc); if c 2 � eb

inc(n1; n2; ~vc); if c 2 � l b

~vc Term(�) n1:send c;n2; ~vc () messagedispatch
outc(n1; n2; ~vc); if c 2 � e� eb

inc(n1; n2; ~vc); if c 2 � l � l b

~vc Term(�) n:deliv (c; ~vc) messagedelivery rcvc(n; ~vc); if c 2 � l � l b

To deal with our examplesin a more e�ective way, we also adopt the following
de�nitions of not so standard temporal connectivesof strict precedence:

(D14-IP) q1
i pq2 def= p ! (: q1)W (q2 ^ : q1);

(D15-P) q1  p q2 def= q1
i pq2 ^ (q1 ! X ((: q1)W (q2 ^ : q1))).

D14 de�nes an initial precedenceconnective and D15 an iterated precedence
connective. Both connectives are anchored; precedenceis required only after
the indexing formula occurs. In speci�cations, indexesare instantiated with
beg and omitted. These connectives are neededto expresscausality. In our
example,get and reply arecausallyconnected,meaningthat theseevents do not
happen concurrently and each occurrenceof get causesa subsequent dispatch
of reply, which doesnot happen otherwise(11.11,11.14). This shows that their
occurrenceis alternating. Note that neither of the connectivesabove is de�nable
in terms of X , F and G only, justifying our choiceof a temporal logic basedon
a strict strong until connective.

There exists just another actor primitiv e not treated so far: become,
which prescribes that an actor will behave in its subsequent computation ac-
cording to a distinct speci�cation determined a priori . In fact, local computa-
tions in � c like cons(consumption) of our exampletogether with a selective use
of attribute symbols simulate this in an awkward manner. Indeed, the whole
BufferCell speci�cation could have beensplit sothat each cell could become
both a linked and an empty one according to the processingof previously re-
ceived messages3. It would be easy to present become as another de�nition
by introducing death actions in signaturesand by de�ning the primitiv e as the
death of an actor and its subsequent resurrection with a distinct behaviour,
keeping the samemail addressin this process. However, we have reasonsto
avoid treating this here: in the �rst place,in order to simplify our presentation,
and, secondly, becausethe primitiv e, with the meaningdescribed above, does
not increasethe expressive power of the model, as identi�ed by Agha (1986).

Concerningthe interpretation of signaturesymbols, the sameassumptions
madein the previouschapter are applicablehere. Note in particular that events

3Note that, sincej� l b j 2 [0; ! 0[, we allow actors to have \m ultiple constructors".
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may happen concurrently if this is allowed by speci�cation axioms and thus
action symbols are a syntactic representation of the events of Hewitt and Baker
(1977), which may proceedconcurrently if unrelated. Speci�cations are de�ned
in terms of parameterisedsignaturesin the usualway. Axioms are only satis�ed
by setsof in�nite discretesequencesof worlds representing the behaviour of an
actor community and this capturesall the possibleevolutions of an open system
rather than just the possibly terminating behaviour of someparticular objects.

3.2.2 Axiomatising Actor Behaviours

In this section,we develop a proof calculus for the actor model which particu-
larisesthe logical system of the previous chapter by consideringan additional
set of logical axioms and inferencerules. The associated notion of model is
taken from the classof structures de�ned in Section2.8 which also satisfy our
extendedaxiomatisation. Thus, we can focuson the actor model here.

We develop an axiomatisation of a consequencerelation ` � , which is in-
dexed by a signature � becausethis relation is de�ned in a way that strictly
dependson the symbols of the given signature. In other words, ` is a weakly
structural consequencerelation. We assumethat � = (�, A , �) is given.
We also use the variable n for actor names,decoratedwith indexeswhenever
necessary. Moreover, for a given c 2 �, type(c) = hs1; : : : ; sn i , n 2 ~vc ab-
breviates

W
f n = vci jtype(vci ) = addr; 1 � i � ng and ~vc = ~uc abbreviates

V
f vci = uci j1 � i � ng. Freevariablesin axiomsare consideredto be implicitly

universally quanti�ed and the following notation is usedto expressthe invari-
anceof an expression;that a requiredactor namehasbecomeknown due to the
delivery of a message,the birth of the actor or the creation of new objects; that
a property does not occur until a speci�c actor name becomesknown; and a
strong fairnessrequirement over the occurrenceof a particular formula:

For in f ormula represents
t Term(�) I nv(t) 8k � t = k ! X (t = k)
p G(�) I nv(p) (p ^ X p) _ (: p ^ X (: p))

n Term(�) addr Acq(n)

W
f 9 ~vd � deliv (d; ~vd) ^ n 2 ~vd jd 2 � l � l b gW
f 9 ~vd � d( ~vd) ^ n 2 ~vd jd 2 � l b gW
f 9 ~vd � new (d;n; ~vd)jd 2 � eb g

n; p Term(�) addr; G(�) W ait (n; p) (: p)W (init ) ^ (: p)W (Acq(n))
p G(�) F air (p) F(p _ GA (: p))

As identi�ed by Hewitt and Baker (1977), locality is an essential character-
istic of the actor model. This is alsoa crucial assumptionin object-basedlogics
to support modular speci�cation and reasoning(Fiadeiro and Maibaum 1992,
Sernadaset al. 1995). Generallyspeaking,locality requiresthat state changesof
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an actor bee�ected only by the events related to the object itself. This meansin
particular that each actor hasencapsulatedstate. We chooseto capture locality
through the axiomsbelow:

(L1 )
W

c2 � c

9~vc � n:c( ~vc) _
V

f 2A l

8 ~vf � n:I nv(f ( ~vf ))

(L2 )
V

c2 � l b

8~vc � 9n1 � n1:new (c;n2; ~vc) _ n2:I nv(init c( ~vc))

(L3 )
V

c2 � l � l b

8~vc � 9n2 � n2:send c;n1; ~vc (_)n1:deliv (c; ~vc) _ n1:I nv(sentc( ~vc))

(L4 )
V

c2 � l � l b

8~vc � n1:deliv (c; ~vc) _ n1:c( ~vc) _ n1:I nv(deliv dc( ~vc))

The �rst axiom says that either an actor performs a local computation or its
extra-logical attributes all remain invariant. In the BufferCell example,this
meansthat either cons, link or go occur or elsethe valuesof val, nxt , void,
lst and up do not change. According to the secondaxiom, either an object is
created with a certain name or the existenceof an actor with such a name is
not disturbed. The other two logical axioms are to guarantee that bu�ering
attributes vary only when messagepassingtakesplace.

The following axiomsconstrain the occurrence of events:

(O1)
V

c2 � e� eb

8~vc � beg ! G(: n1:init ) _
V

n 2 n 2 : ~vc

n1:Wait (n; send c;n2; ~vc ())

(O2)
V

c2 � l � l b

8~vc � beg ! (: n:deliv (c; ~vc))W (n:init )

(O3)
V

c2 � ( l � l b ) [ c

8~vc � beg ! (: n:c( ~vc))W (n:init )

(O4)
V

c2 � eb

8~vc � beg ! G(: n1:init ) _
V

n 2 ~vc

n1:Wait (n; 9n2 � new (c;n2; ~vc))

(O5a)
V

b;c;2 � l b
d2 � l � l c

8~vc; ~vd � 9n1; ~vb � n1:new (b;n2; ~vb) ! n2:init d( ~vc) = n2:sentd( ~vd) = n2:deliv dd( ~vd) = F

(O5b )
V

c2 � l b

8~vc � beg ! (n:c( ~vc) $ n:init c( ~vc) = T )

(O6a)
V

c2 � l b

9n1; n2; ~vc � E(n1:new (c;n2; ~vc))

(O6b )
V

c2 � l b

G(9! n2 � 9n1; ~vc � n1:new (c;n2; ~vc)) ! 8n2 � F(9n1; ~vc � n1:new (c;n2; ~vc))

(O7a)
V

c2 � l b

8~vc � 9n1 � n1:new (c;n2; ~vc) ! XF (n2:c( ~vc))

(O7b )
V

c2 � l b

8~vc � beg ! X (( : n2:c( ~vc))W (: n2:c( ~vc) ^ 9n1 � n1:new (c;n2; ~vc)))

(O8)
V

c;d2 � l b
d6= c

8~vc �n1:new (c;n2; ~vc) ! /9n3; ~uc; ~vd �n3 : ~uc 6= n1 : ~vc^ n3:new (c;n2; ~uc)_n3:new (d;n2; ~vd)

(O9)
V

c2 � l � l b

8~vc � n:deliv (c; ~vc) ! n:sentc( ~vc) = T

(O10)
V

c;d2 � l � l b
d6= c

8~vc � n:deliv (c; ~vc) ! /9 ~uc; ~vd � ~uc 6= ~vc ^ n:deliv (c; ~uc) _ n:deliv (d; ~vd)
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(O11)
V

c2 � l � l b

8~vc � n:c( ~vc) ! n:deliv dc( ~vc) = T

(O12)
V

c;d2 � ( l � l b ) [ c

c6= d

8~vc � n:c( ~vc) ! /9 ~uc; ~vd � ~uc 6= ~vc ^ n:c( ~uc) _ n:d( ~vd)

O1-4 state that, beforethe birth of an actor, not only the dispatch, deliv-
ery and consumptionof messagesbut also local computations and requestsfor
creation are forbidden. Note that O1 and O4 are more liberal than the other
axioms if the respective actor is never created but are more restrictive other-
wise by requiring that each actor name becomesknown due to the delivery of
a message,the birth of the actor or the creation of another object before the
namecan be usedin the respective task. Theserestrictions are to prevent the
useof arbitrary namesand modesof interaction such asbroadcastingwhich are
distinct from point-to-p oint messagepassing.On the other hand, the sameax-
iomsare permissive concerningunborn actorsbecausewe are capturing an open
mode of interaction, which cannot be totally constrainedby the local semantics.
An actor complying with somecommunity speci�cation, say, doesnot have to
be created in this context, but may needto dispatch somemessageswhich are
mentioned in the speci�cation. Therefore,the occurrenceof theseevents should
not be logically forbidden. The situation above is dual to that described by
Fiadeiro and Maibaum (1997) wherein read-only attributes are adopted as a
meansof capturing an open synchronous mode of interaction. Such attributes
cannot be constrained locally, but only at a global level where the respective
components are put together and interfere with the behaviour of oneanother.

The subsequent set of logical axioms above relates the creation of new
actors, the occurrenceof birth actions and the existenceof other objects. O5a
and the other axioms imply that an actor can only be created once and also
that messagesare not sent or deliveredto the object beforeits birth. Moreover,
accordingto O5b , the actor birth occurs in the beginning of time if the object
always exists. O6a says that it is always possiblefor someactor to create a
new object and O6b states that all the actor nameswill be usedif exactly one
object is created at each instant. It is important to mention that, becauseof
the speci�c characteristicsof the adopted time 
o ws, the former axiom implies
that the set of actor namesis in�nite while the latter implies that the sameset
is countable. O7a and O7b state that the occurrenceof births and requestsfor
creation are always causallyconnectedafter the initial moment.

We have also proposeda set of axioms stating mutual exclusion. Most
of theseproperties are particular to the actor model, whereasa few are due to
decisionsin the designof our formalism. O8 speci�es that actorswith the same
namecannot be concurrently created;O9 says that messagescan be delivered
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only if they werepreviously sent; O10 determinesthat only onemessagecan be
deliveredto an actor at each instant; O11 says that messagescan be consumed
only if they were previously delivered; and �nally , accordingto O12, message
consumption and local computations of an actor are totally ordered, meaning
that two such events cannot occur in parallel. Concerningthis last axiom, we
could have allowed instead actors with full internal concurrencywhile ensuring
attribute consistencythrough additional axioms. We prefer the simpler formula-
tion hereto facilitate speci�cation and reasoning.Note that the speci�ed actors
can always present someinternal concurrencyanyway: they can, for instance,
createmany other objects and sendseveral messagesat the sametime.

Many logical attributes are introducedin the extensionof actor signatures.
The modi�cation of their valuesaccording to the occurrenceof the respective
actions is de�ned by the following valuation axioms:

(V1 )
V

c2 � l b

8~vc � 9n1 � n1:new (c;n2; ~vc) ! X (n2:init c( ~vc) = T )

(V2 )
V

c2 � l � l b

8~vc � 9n1 � n1:send c;n2; ~vc (! )X (n2:sentc( ~vc) = T )

(V3 )
V

c2 � l � l b

8~vc � n:deliv (c; ~vc) ! X (n:sentc( ~vc) = F ^ n:deliv dc( ~vc) = T )

(V4 )
V

c2 � l � l b

8~vc � n:c( ~vc) ! X (n:deliv dc( ~vc) = F)

According to V1 , if the creation of an actor hasbeenrequested,there will exist
a new actor in the next instant. Moreover, axioms V2 and V3 say that if a
messageis dispatched, it will be bu�ered for output, and likewisethe message
will be removed from the output and transferredto the input bu�er whenever it
is delivered. Furthermore, each processedmessagewill be subsequently removed
from the input bu�er as stated in axiom V4 . Note that the delay in bu�ering
messages,in the next instant only, rules out the existenceof Zenoactors,which
could receive, computeand reply in�nitely fast.

Finally, fairness axioms are required to guarantee a correct collective be-
haviour. Without fairness,it could be the casethat a messageis not delivered
even if the target actor is always willing to receive it, e.g., becauseof a trans-
missionfailure, and likewisethat received messagesare never consumed.

(F1 )
V

c2 � l � l b

8~vc � n:deliv dc( ~vc) = T ^ E(n:c( ~vc)) ! n:F air (c( ~vc))

(F2 )
V

c2 � l � l b

8~vc � n:sentc( ~vc) = T ^ E(n:deliv (c; ~vc)) ! n:F air (deliv (c; ~vc))

The �rst axiom says that, if the processingof a singlemessageis obliged,because
the messagewas deliveredand hasbeenlocally bu�ered, and it is alsoenabled,
i.e., possible, the messagewill be processedor else the actor will becomeal-
ways disabledfor processing,unable to consumethe pending message.Mutatis
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mutandis, this is what the secondaxiom says for messagedelivery. Theseax-
ioms capture assumptionsthat can be classi�ed in betweenthoseof perfect and
initially perfect bu�ers as described by Koymans (1987).

A crucial simpli�cation has beenmade here concerningmessagepassing.
We should have treated the fact that messagesmay be exchangedin sequence
or concurrently and someof them could be lost or duplicated in this way. The
usualtreatment of this problemis to attach tagsto messagessothat they become
distinct from each other. To avoid obliging the speci�er to dealwith such details,
a logical treatment could have beende�ned here, much in the way that object
naming is dealt with through auxiliary attributes. Details are omitted.

All the propertiesdiscussedabovehavealreadybeenstated in the literature
on the actor model, e.g. by Clinger (1981), Hewitt and Baker (1977), despite
the lack of a formally stated axiomatisation. Hereafter,we namethe full set of
logical axiomsasAx def= f L1-4 , O1-12, V1-4 , F1-2 g. The set Ax , on the other
hand, contains only the axioms with barred labels, wherein logical attribute
symbols do not appear. The axiomatisation of the actor model allows us to
derive the following more or lessstandard temporal logical rules for reasoning
about the concurrent behaviour of object communities:

Prop osition 3.2.4 (Deriv ed Rules of Inference) Given an actor speci�ca-
tion � = (�, 	), � = (�, A , �), the following inferencerules are derivable for
existing objects in the � community, provided that f k; n1; n2g � VM S B T L

addr , p1 and
q are local state formulas parameterisedby n1 and p2 is a local state formula
parameterisedby n2:

(EXIST ) 1: p2[k] ! 9~vb � n2:new (b;k; ~vb)
2: p1[k] ! q _

W

c2 � l b

9~vc � n1:new (c;k; ~vc)

b 2 � eb

p2[k] ! X G(p1[k] ! q)

(SAFE ) 1:
V

b2 � l b

8~vb � n1:b( ~vb) ! q

2:
V

c2 � c

8~vc � n1:c( ~vc) ^ q ! X q

Gq

(INV ) 1:
V

c2 � c

8~vc � n1:c( ~vc) ^ q ! X q

q ! Gq

(RESP ) 1:
V

c2 � c

8~vc � n1:c( ~vc) ^ p1[ ~vd] ! X (p1[ ~vd] _ n1:d( ~vd))

2: n1:d( ~vd) ! F(q[ ~vd])
3: p1[ ~vd] ! FE (n1:d( ~vd))

d 2 � l � l b

n1:deliv (d; ~vd) ! X (F(p1[ ~vd]) ! F(q[ ~vd]))
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(COM ) 1:
V

c2 � c

8~vc � n1:c( ~vc) ^ p1[ ~vd] ! X (p1[ ~vd] _ n1:deliv (d; ~vd))

2: n1:deliv (d; ~vd) ! F(q[ ~vd])
3: p1[ ~vd] ! FE (n1:deliv (d; ~vd))

d 2 � e� eb and
d 2 � l � l b n2:send d;n1; ~vd (! )X (F(p1[ ~vd]) ! F(q[ ~vd]))

(NRESP ) 1: p2[n1] ! 9~vb � n2:new (b;n1; ~vb)
2: 9~vb � n1:b( ~vb) ! 8vd � p1[ ~vd]
3: n1:d( ~vd) ! q[ ~vd]
4: 9n � n:deliv (d; ~vd) ! X (q[ ~vd ])
5: n1:d( ~vd) ! X (p1[ ~vd] _ q[ ~vd])

b 2 � l b \ eb

d 2 � l � l b p2[n1] ! X G(p1[ ~vd] ! (: n1:d( ~vd))W (n1:deliv (d; ~vd)))

(NCOM )

b 2 � l b \ eb

1: p2[n1] ! 9~vb � n2:new (b;n1; ~vb)
2: 9~vb � n1:b( ~vb) ! 8vd � p1[ ~vd]
3: n1:deliv (d; ~vd) ! q[ ~vd ]
4: 9n � n:send d;n1; ~vd (! )X (q[ ~vd ])
5: n1:deliv (d; ~vd) ! X (p1[ ~vd] _ q[ ~vd])

d 2 � e� eb and
d 2 � l � l b p2[n1] ! X G(p1[ ~vd] ! (: n1:deliv (d; ~vd))W (9n � n:send d;n1; ~vd ()))

The rules above can be derived using the axiomatisation of the branching time
logic and our logical axiomsabout the actor model. Theserulesaremoreconve-
nient to usebecausethe logical attributes have beeneliminated. Rule EXIST ,
basedon the fact that a namecannot be reusedonceit is given to someactor,
guarantees a local safety property from the con�guration of the actors in the
environment. SAFE and INV are the usual rules for verifying safety and in-
varianceproperties. RulesCOM and RESP capture the fairnessrequirements
on actor behaviours. They should be applied to verify that the consequences
of delivering or consuminga messageare eventually obtained whenever the re-
cipient actor becomesenabledoften enoughto guarantee the occurrenceof the
respective event. The slightly morecomplexrules for absenceof communication
and response,NCOM and NRESP , respectively, need to be ground on the
creation of new actors since our axiomatisation admits initially present mes-
sagesaddressedto originally existing objects. Their conclusionsare that, once
the actor is created, whenever there are no pending messagesfor delivery or
processing,messageswill be delivered or consumedonly if precededby the oc-
currenceof their triggering events. All theseinferencerules may be simpli�ed
by a careful instantiation of the adoptedschematic variables.

The rule COM in particular is to be usedin proving properties that arise
from the interaction between two (potentially distinct) actors. The situation
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here di�ers from that described in (Barreiro et al. 1995), where interaction
is captured via action sharing in a more explicit and unconstrained manner.
Therein, a very strong form of fairnessis proposed,since in generala shared
action may loosepermissionto happen in somecomponent while obligedto take
place. Consideringactor systems,however, such a fairnessstrengtheningis not
required: an event must be locally provided by oneactor only and cannot have
its permissionto occur externally constrainedin this way.

3.3 Veri�cation of Lo cal Prop erties

Let us illustrate the application of our speci�c proof calculusto the veri�cation
of local properties of individual actors. From the BufferCell speci�cation,
it is easy to seethat once a cell is created, it may be consumedand linked
to another cell of the bu�er afterwards. If a cell has already been consumed
and it is not the last element of the list, the cell will never perform such local
computationsagain. Hence,the cell will simply forward every incomingmessage
to the subsequent bu�er element. The previousproperty is stated as follows:

` BufferCell void = T ^ lst = F ! G(: cons^ : link(n)) (3.3.1)

As in the examplesof the previouschapter, we split the veri�cation of this
property into two parts, which are both developed in a similar way. We �rst
dealwith the action cons. The axiomsin the speci�cation arehelpful in showing
that void, part of the antecedent of the implication above, is always invariant
after becomingtrue. To begin with the proof, let us examinethe e�ect of the
action go over the value of this attribute:

1. go^ val = v^ void = x^ nxt = n^ lst = y ! (11.5)
X (val = v^ void = x^ nxt = n^ lst = y)

2. go^ val = v^ void = x^ nxt = n^ lst = y ! DIST-ANDX , HS 1
X (void = x) DIST-IF A , R1-MP , AND-E +

3. val = v ! (go^ void = x^ nxt = n^ lst = y! A1-I , A1-I , REFL , R1-MP
go^ val = v^ void = x^ nxt = n^ lst = y) AND-R , DIST-IF A , HS +

4. val = v ! LTRAN , R1-MP 2, LTRAN
(go^ void = x^ nxt = n^ lst = y ! X (void = x)) R1-MP , R1-MP 3 +

5. go^ void = x ^ nxt = n ^ lst = y ! GEN- 8 4, EX C- 89, R1-MP
X (void = x) NV OID , R1-MP +

6. nxt = n ! (go^ void = x ^ lst = y ! A1-I , A1-I , REFL , R1-MP
go^ void = x ^ nxt = n ^ lst = y) AND-R , DIST-IF A , HS +

7. nxt = n ! LTRAN , R1-MP 5, LTRAN
(go^ void = x ^ lst = y ! X (void = x)) R1-MP , R1-MP 6 +

8. go^ void = x ^ lst = y ! GEN- 8 7, EX C- 89, R1-MP
X (void = x) NV OID , R1-MP +
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9. lst = y ! (go^ void = x ! A1-I , A1-I , REFL , R1-MP
go^ void = x ^ lst = y) AND-R , DIST-IF A , HS +

10. lst = y ! LTRAN , R1-MP 8, LTRAN
(go^ void = x ! X (void = x)) R1-MP , R1-MP 9 +

11. go^ void = x ! X (void = x) GEN- 8 10, EX C- 89, R1-MP , NV OID , R1-MP
12. go^ void = T ! X (void = T ) GEN- 8 11, A19- 8, R1-MP

The rationale behind the veri�cation of the following two sentencesis the
sameasadoptedabove. Hence,the respective derivations cansafelybe omitted.
Then, we areallowed to conjoin theseand sentence(12) above in order to obtain
the requiredpremisefor an application of rule INV , completing in this way the
veri�cation that void is always invariant after becomingtrue.

13. link (n) ^ void = T ! X (void = T ) from 11.8
14. cons! X (void = T ) from 11.6
15. cons^ void = T ! X (void = T ) AND-L 14
16. void = T ! G(void = T ) AND-I 12, 13; AND-I 15; INV

Now we have to ensurethat a bu�er cell cannot be consumedmore than
once. The following implication can be usedto simplify considerablythe speci-
�cation axiom involved:

(: (cons_ send reply; n; v ())) W (get(n)^ val = v^ void = F^ : cons) !
(: cons)W (get(n)^ void = F^ : cons)

(3.3.2)

This sentenceis provablebasedon MON-GW , which capturesthe monotonicity
of the connective W . The main derivation proceedsas follows:

17. cons! (11.14), D15-P , AND-E , (3.3.2),
X ((: cons)W (get(n)^ void = F^ : cons)) R2-G , MON-GX , R1-MP , HS +

18. (: cons)W (get(n)^ void = F^ : cons) ! REFL , D10-W , RPL-UF , OR-R
F(get(n)^ void = F^ : cons) _ G(: cons) REFL , OR-R , OR-L , HS +

19. F(get(n)^ void = F^ : cons) ! bool Ax , AND-L , R2-G
F(: void = T ) MON-GF , R1-MP +

20. (: cons)W (get(n)^ void = F^ : cons) ! INVE , R1-MP 19, RTRAN , R1-MP
(G(void = T ) ! G(: cons)) R1-MP , D3-OR , D9-G , HS 18 +

21. X (( : cons)W (get(n)^ void = F^ : cons)) ! R2-G 20, MON-GX , R1-MP
(X G(void = T ) ! X G(: cons)) MON-GX , HS +

22. cons! X G(void = T ) R2-G 16, MON-GX , R1-MP , HS 14
23. cons! X G(: cons) HS 17, 21; PERM , R1-MP

HS 22, CONT , R1-MP +

The action consdoesnot happenspontaneously. Indeed,it is causedby the
consumptionof a messageget. Basedon the logical axiom O12, which forbids
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the occurrenceof local computationsin parallel with messageconsumptions,and
L1, which forceseach actor to have an encapsulatedstate, we take advantage
of this causality relation to relate the actor state and the occurrenceof local
computations:

24. get(n)^ val = v^ void = F ! DIST-ANDX , (11.11), HS
X (cons) DIST-IF A , AND-E +

25. val = v ! (get(n)^ void = F ! A1-I , A1-I , REFL , R1-MP
get(n)^ val = v^ void = F) AND-R , DIST-IF A , HS +

26. val = v ! LTRAN , R1-MP 24, LTRAN
(get(n)^ void = F ! X (cons)) LTRAN , R1-MP , R1-MP 25 +

27. 9v � val = v ! (get(n)^ void = F ! X (cons)) GEN- 8 26, EX C- 89, R1-MP
28. get(n) ^ void = F ! X (cons) NV OID , R1-MP 27
29. G(: cons) ! G(void = T ! : cons) A1-I , R2-G , MON-G , R1-MP
30. X G(: cons) ! X G(void = T ! : cons) R2-G 29, MON-GX , R1-MP
31. G(cons! X G(void = T ! : cons)) HS 23, 30; R2-G
32. get(n) ^ void = F ! MON-GX

XX G(void = T ! : cons) R1-MP 31, HS 28 +
33. get(n) ^ void = F ! O12, A19- 8

: cons^ : l ink (k) ^ : go HS , AND-L +
34. get(n) ^ void = F ! DIST-ANDX , DIST-IF , HS , DM , HS 33

X (void = F) L1 , D3-OR , HS , R1-MP , AND-E +
35. get(n) ^ void = F ! X (void = F ^ cons) AND-R 28, 34, DIST-IF A , HS
36. (cons! void = F) ! (cons! : void = T) bool Ax , LTRAN , R1-MP
37. void = F ^ cons! (void = T ! : cons) A1-I , AND-E , HS 36, INVE , HS
38. get(n) ^ void = F ! R2-G 37, MON-GX

X (void = T ! : cons) R1-MP , HS 35 +
39. get(n) ^ void = F ! AND-R 32, 38; FIX-G , R2-G

X G(void = T ! : cons) MON-GX , R1-MP , HS +
40. get(n) ^ void = F ! : cons DIST-IF A , HS 33, AND-E
41. get(n) ^ void = F ! (void = T ! : cons) A1-I , HS 40
42. get(n) ^ void = F ! G(void = T ! : cons) AND-R 39, 41; FIX-G , HS

We wish to concludethe proof that cells in the void state can never be
consumedagain. Note that this is true from the initial instant onwards. So,we
candevelop the remainderof the proof basedon the speci�cation axiom (11.14),
which requires that since the beginning of time no get messagebe processed
beforethe actor birth:

43. beg ! (11.14), D15-P
(: cons)W (get(n) ^ void = F ^ : cons) AND-E , (3.3.2), HS +

44. beg ! OR-L 42, D10-W
G(void = T ! : cons) _ (void = T ! : cons)U (:> ) TRAN-W 43, D10-W +

45. : F(:> ) ! D3-OR 44, PERM , R1-MP
(beg ! G(void = T ! : cons)) RPL-UF , INVE , R1-MP , HS +

46. beg ! G(void = T ! : cons) D9-G 45, G> , R1-MP
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47. void = T ! : cons R3-b egG 46
48. G(void = T ) ! G(: cons) R2-G 47, MON-G , R1-MP
49. void = T ! G(: cons) HS 16, 48

In a similar way, it can be shown that ` BufferCell lst = F ! G(: link (n)) . Conjoin-
ing thesepartial results basedon AND-L and DIST-IF A , we concludethat
(3.3.1) is derivable using DIST-ANDG .

The exampleabove serves to illustrate important peculiarities in the ver-
i�cation of local safety properties of actors. Essentially , the same principles
proposedin the previous chapter can be used to start this process. Note for
instancethat, due to the locality and local sequentialit y assumptions,we could
verify a bu�er cell invariant using a caseanalysisargument basedon the e�ect
of each local computation over the attributes. However, becausethe occurrence
of such local events is normally determinedby the consumptionof messages,we
alsohave to rely on causality axioms to link both kinds of occurrence.

It is alsointerestingto note that, becauseweproposea setof logicalaxioms
which takes into account the existenceof a community of actors, here we have
to particularise someof theseaxioms by removing the name of the respective
actor from each expressionin order to verify local safety properties. Becauseno
interaction is involved, we may usejust the set of axioms in Ax together with
SAFE and INV , sincelogical symbols are introducedand axiomatisedby the
remaining logical axiomsand rules preciselyto support interaction. This whole
processseemsto be in contrast to the work of America and de Boer (1996),who
adopt a three level axiomatisation and lift local sentencesto intermediate and
global contexts whenever necessary.

3.4 Comp osition of Actor Speci�cations

In Section3.2.1we discoveredthat, to give an account of what is usually consid-
eredto be a complexcomponent in the actor model, we needat least to be able
to put distinct signaturestogether to represent the linguistic structure of yet
another component or an entire system. More generally, the view that complex
descriptionsshouldbe de�ned in terms of simpler descriptionsput together has
beendeveloped within the theory of Institutions by Goguenand Burstall (1992)
and requires the de�nition of basic entities to be regardedas designunits. In
our case,they will be actor speci�cations.

It is also necessaryto provide meansof connecting object descriptions
to each other. Traditionally, in a proof-theoretic approach to design, this is
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achieved by providing translations betweenthe languagesof the related theories
(Maibaum and Turski 1984). If a symbol-to-symbol mapping, i.e., a morphism,
betweentwo actor signaturesis given, the existenceof a compositional relation
of translation betweenthe respective languagescan be guaranteed.

De�nition 3.4.1 (Actor Signature Morphism) Given two actor signatures
� 1 = (� 1, A 1, � 1) and � 2 = (� 2, A 2, � 2), an actor signature morphism� : � 1 !
� 2 consistsof:

� a morphism of algebraic structures � � : � 1 ! � 2 such that � � (addr1) =
addr2;

� for each f 2 A 1hs1 ;:::;s n i ;s
, an attribute symbol � � (f ) : � � (s1) � : : :� � � (sn) !

� � (s) in A 2;

� for each c 2 � 1hs1 ;:::;s n i
, an action symbol � 
 (c) : � � (s1) � : : : � � � (sn ) in � 2

such that: (i) � 
 (� c1 ) � � c2 ; (ii) � 
 (� eb1
) � � eb2

; (iii) � 
 (� e1 � eb1
) � � e2 � eb2

;
(iv) � 
 (� lb1

) � � lb2
; (v) � 
 (� l1 � lb1

) � � l2 � lb2
and (vi) � 
 (� l1 � e1 ) � � l2 � e2 .

It is straightforward to provide a compositional de�nition for the translation of
classi�cations, terms, formulae and setsthereof under � .

Translations that necessarilyrelate the distinguishedsymbol of each signature,
as de�ned above concerningaddr, have been called pointed morphisms in the
literature (Parisi-Presicceand Pierantonio 1994). Sincerenaming is possiblein
translating the other signaturesymbols, morphismscapture the relabelling oper-
ation proposedby Agha (1986)to equaliseidenti�ers in distinct descriptions. In
addition, it is possibleto usesignaturemorphismsto allow someexternal sym-
bols, membersof � e, to becomelocal aswell. This stemsfrom the fact that, in a
complexcon�guration, there may be events required from the environment of a
component which are not provided by the environment of the whole con�gura-
tion, becausethey are ensuredby another component of the samecon�guration.
It is not di�cult to seethat any given actor signature morphism inducesother
morphismsbetweenthe corresponding extendedand parameterisedsignatures,
by translating their additional symbols accordingto the way the original sym-
bols are translated by the given morphism. This meansthat the speci�er, in
de�ning a morphism to connect two signatures,doesnot needto be concerned
with the new symbols introducedin their extensionor parameterisation.

We would like to be always able to combine any �nite number of actor sig-
naturessoasto ensurethe necessarystructure to support interaction. This can
be accomplishedif we can show that actor signaturesand morphismsdetermine
a �nitely co-completecategory, as explainedin the previouschapter:



3.4. Composition of Actor Speci�cations 113

Theorem 3.4.2 (Category of Actor Signatures) Actor signaturesandmor-
phismsconstitute a �nitely co-completecategorySigAct .

Proof: To ensurethat we have a category, we must show that identities exist
and composition is associative. Considering that morphisms are set-valuated
functions, the only di�cult y that may arisein verifying the existenceof identit y
is due to the non-disjoint setsof action symbols. But, for � id! �, if c 2 � eb, (a)
id (c) 2 � eb, from (ii) and (iii) in the de�nition of signature morphisms. Now,
if it is also the casethat c 2 � lb, (b) id (c) 2 � lb, from (iv) and (v). Due to
(a) and (b), id (c) 2 � eb\ lb whenever c 2 � eb\ lb. The sameargument applies to
any c 2 � (e� eb)\ (l � lb) and thereforeSigAct admits identit y, the constant function
on sets. The associativit y of signature morphisms follows directly from their
set-theoreticde�nition.

The initial element of this categoryis � ? = ((f addrg, f g), f g, f g). Givena
pair of morphisms� � 1! � 1, � � 2! � 2, their pushout is de�ned up to isomorphism
by any pair of morphisms� 1

� 10
! � 0, � 2

� 20
! � 0 such that S0= � 10(S1) � � (S) � 20(S2),


 0= � 10(
 1) � � (
) � 20(
 2), A 0= � 10(A 1) � � (A ) � 20(A 2) and � 0= � 10(� 1) � � (�) � 20(� 2),
where� = � 0

1 � � 1 = � 0
2 � � 2. The existenceof the initial element and pushoutsis

su�cien t to guarantee �nite co-completeness. (Sig Act Category)

Speci�cation morphismsinducedby the signaturemorphismsabove do not
capture the expected enrichment of object behaviour as usual in Institutions
(Goguen and Burstall 1992). This happensbecausethey do not translate our
additional logical axioms, which are neededto guarantee a correct collective
behaviour. This shows that such morphismsdo not determine interpretations
betweentheories. To support this, the following morphismsare used:

De�nition 3.4.3 (Actor Speci�cation Morphisms) Given two actor spec-
i�cations � 1 = (� 1, 	 1) and � 2 = (� 2, 	 2), a speci�c ation morphism � : � 1 !
� 2 is a signature morphism lifted to sentencessuch that ` � 2 � (g) for every
g 2 	 1 [ Ax � 1 .

The inclusion of the translated logical axioms � (Ax � 1 ) into � 2 is necessaryas
they represent properties which are not always a consequenceof Ax � 2 , since
someof these axioms rely on the existenceof the original signature symbols
only. Oncethe signatureis augmented with newsymbols usinga morphism, the
respective propertiesmay fail to hold. The locality property, for instance,is not
preserved by the translation, as shown by Fiadeiro and Maibaum (1992).

Our �nite co-completenessresult concerningthe category of actor signa-
tures easily lifts to categoriesof extendedand parameterisedsignatures. Much
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in the sameway, it can be transported to a categoryof actor speci�cations with
the morphismsde�ned above:

Prop osition 3.4.4 (Category of Actor Speci�cations) Actor speci�cations
and morphismsconstitute a �nitely co-completecategorySpecAct .

A comparisonbetweenour notion of composability and that of Agha et al.
(1997) and Talcott (1996b) is in order. As discussedin the previous chapter,
composition is realisedhereby computing co-limits, or pushoutsin the particu-
lar caseof two connectedspeci�cations. Given a set of speci�cations with their
pairwise sharedsub-components �xed, pushoutsof speci�cation morphismsare
commutativ e and have (� ? ; f g) as their identit y. In addition, all their possible
compositions in any order are isomorphicamongthemselves,which yields asso-
ciativit y up to isomorphism. Nevertheless,theseare the only similarities with
their semantic notion. The composability notion in their work is dynamic and
fails to put together components having in commonidentical namesof existing
actors. This is syntactically immaterial, though, sincethere is a canonicalway
of relating actor syntax and semantics, as hinted by Agha (1986) and followed
here,obliging the composedspeci�cations to entail con�gurations with disjoint
sets of existing actor addresses. We treat the dynamic composition of actor
components while developing rely-guarantee proofs, asoutlined in Section3.5.

We alsoneedto comparethe composition of actor speci�cations using the
morphisms above to the similar usageof categoricalnotions in Chapter 2. It
is particularly important to mention that, becauseof the implicit parameteri-
sation of actor signaturesby a sort of mail addressesand the restricted useof
logical action symbols to support interaction, it is not possibleto expressat the
local level any form of extra-logical sharing of signature symbols. This means
that at this point interaction is supported logically, always by the synchronised
actions introducedin the extensionof actor signatures,which may occur simply
becausethe interaction is betweenactors belongingto the samecommunity or,
conversely, becausethey belong to distinct communities and the designerde-
cided to de�ne morphismsto support their interaction. This is in keepingwith
the local discipline imposedby the actor model, which precludesany form of
interaction other than by object creation and asynchronousmessagepassing.

Using the constructions described above, we can now study communities
of heterogeneousactors. A good example is obtained by composing a bu�er
as described in Section3.2.1, a processorand a set of terminals to represent a
uniprocessortime-sharingarchitecture. The intendedbehaviour of the respective
component, whosespeci�cation shall be called UTSA , is to allow commands
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Actor Terminal
data typ es addr; cmd
attributes bf : addr
actions

ter(addr) : lo cal + extrn birth ;
rd(cmd) : lo cal computation ;
tr (cmd) : extrn message

axioms n : addr; v : cmd
ter(n) ! bf = n (12.1)
FG(8v � : rd(v)) (12.2)
rd(v)^ bf = n ! X (bf = n) (12.3)
rd(v)^ bf = n ! X (send tr ; n; v ())

(12.4)
send tr ; n; v ( ) rd(v) ^ bf = n (12.5)

End

Actor Pr ocessor
data typ es addr; cmd (NEX ; BEG : cmd)
attributes in; id : addr; prv : cmd
actions pro(addr; addr) : lo cal + extrn birth ;

exc(int) : lo cal computation ;
nop; rec(int) : lo cal + extrn message;
req(addr) : extrn message

axioms n; p : addr; v : cmd
pro(n; p) ! id = n ^ in = p ^ prv = NEX (13.1)
pro(n; p) ! X (exc(BEG ) ^ send nop; n ()) (13.2)
exc(v) ! X (prv = v) (13.3)
exc(v)^ id = n^ in = p! X (id = n^ in = p) (13.4)
nop^ id = n^ in = p! X (send req; p;n ()) (13.5)
nop ^ id = n ! X (send nop; n ()) (13.6)
rec(v) ! X (exc(v)) (13.7)
exc(v)  rec(v)_ 9n; p � pro(n; p)^ v = BEG (13.8)
send nop; n ( ) id = n^ 9p � pro(n; p)_ nop (13.9)
send req; p;n ( )nop ^ id = n ^ in = p (13.10)
E(rec(v)) ! v 6= NEX (13.11)
prv 6= NEX ! FE (deliv (nop)) ^ FE (nop) (13.12)
prv 6= NEX ^ v 6= NEX ! FE (deliv (rec(v))) (13.13)
prv 6= NEX ^ v 6= NEX ! FE (rec(v)) (13.14)

End

Figure 3.2: Simpli�ed speci�cation of terminals and processors.

typed by terminal usersto be always processedeventually. The speci�cation of
terminal and processoractors for this purposeappear in Figure 3.2.

A terminal becomesaware of the mail addressof a cell which will serve
as a bu�er at creation time (12.1). Afterwards, the terminal always transmits
typed commandsto this initial bu�er cell so that they can wait for processing
(12.4). The readingcapability of terminals, however, is �nite accordingto (12.2).
Processors,in turn, have a more complexbehaviour sincethey have to request
commandsfrom the bu�er at any possibleoccasion(13.5). Valid commandsmay
always be eventually deliveredto the processorafter initialisation (13.13). That
is, any commandexceptNEX , which standsfor a not executablecommand,can
be deliveredto the processorafter the �rst BEG is executed.Oncereceived, any
command is subsequently executed(13.7). The computation cycle of the pro-
cessoralternatesamongperforming no action, in which casetime simply passes
without witnessing the occurrenceof any action, and processingthe messages
nop (13.5, 13.6), rec (13.7) or the local computation exc (13.3,13.4). This cycle
beginsjust after the occurrenceof the actor birth denotedby the action symbol
pro (13.2).

Clearly, the actors above cannot work as a single component unlessthe
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Figure 3.3: Static con�guration of the multi-tasking system.

proper interconnectionsbetweenthem areprovided. Morphismsestablish\ph ys-
ical sharedchannels" to make messagepassingpossible,asde�ned in Figure 3.3,
part (a). Component1 , Component2 andUTSA , which result from the com-
position of the three given speci�cations, are all de�ned up to isomorphismby
the pushout of the given morphisms. This meansthat any name for each of
their symbols su�ces as long as the symbols to be sharedand only them are
equalised. They are de�ned accordingto the two connectorspeci�cations and
the morphismsin Figure 3.3, part (b). The signatureof Connector1 contains
one external messagesymbol only, x, which is mapped to the tr action of ter-
minals and to the put action of bu�ers. Connector2 hastwo such symbols, y
and z, which aremapped to get and reply at the bu�er sideand to req and recat
the processorside, respectively. The set of axioms in both connectorspeci�ca-
tions is empty. Assumingthat the underlying algebraicmorphismsmap the mail
addresssort accordinglyand associate integersto commands,the morphismsin
the �gure clearly satisfy the requirements of De�nition 3.4.3.
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3.5 A Rely-Guaran tee Design Discipline

Moving away from the traditional direct approach to speci�cation and veri�ca-
tion appearsto be inevitable when the featuresof open recon�gurable systems
have to be treated. Isolated speci�cations establishonly the local properties of
each speci�ed object. Dynamic (re)con�guration and object interaction are two
global featureswhich remain completely untreated in this way. The approach
for treating such featureswhile preservingthe local designdiscipline is now stan-
dard: Chandy and Misra (1981)proposea rely-guarantee discipline which allows
us to deal with global properties in an organisedconditional manner.

Rely-guarantee designis basedon the premisethat speci�cation and veri-
�cation take placein a context wherethe descriptionof component behaviour is
relativised to take into account that of the environment, i.e., their limited inter-
action is described explicitly. Either in specifying or verifying someproperties
of a component, a rely clausede�nes a property related to the component which
the environment is assumedto satisfy. A guarantee clauseis also used to ex-
pressthe properties related to the environment which the component maintains
provided that the assumptionon the environment holds. The formal semantics
of each of theseclausesvariesaccordingto the adopteddesigndiscipline and the
mode of interaction assumedin the underlying model. They alsoprovide useful
information that may be helpful in somere�nement steps(Jones1983).

Due to our interest in dealingwith dynamic con�guration and interaction
of actor components while preservingthe discipline for speci�cation and com-
position described so far, we chooseto imposea rely-guarantee discipline in the
veri�cation processonly. For a given speci�cation � and �nite sets of formu-
las init , r ely, pre, guar and post basedon �, we adopt assertionsof the form
init : f pre;r elyg� f guar; postg meaningthat, given the initial conditions init ,
whenever the pre-conditionspre aresimultaneouslyestablishedand the assump-
tions rely are not violated unlessthe guaranteesin guar and a post-condition in
postareobtained, the guaranteesarenot violated until and necessarilyincluding
the moment when the post-condition is obtained, for all the post-conditions in
post. Putting JP def=

V
f pjp 2 Pg, such assertionsare formalisedas follows:

De�nition 3.5.1 (Rely-Guaran tee Assertion) Given a theory presentation
� = (� ; 	) in obj SpecAct and init [ r ely [ pre[ guar [ post � G(�) such that
each of thesesetsis �nite, rely-guarantee assertionsare de�ned below:

(D16-R G) init : f pre;r elyg� f guar; postg def=
� `

V

p2 post
Jinit ! X G(Jpr e ^ (Jr ely)W (p ^ Jguar ) ! (Jguar )U (p ^ Jguar ))
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If comparedto other rely-guarantee assertionsavailable in the literature,
our de�nition is rather unusual. The initialisation condition is normally treated
elsewhere:Pnueli (1985a) considersthat it is provided together with process
composition while initialisation is treated asin VDM, separatedfrom the opera-
tions, in the extensionof this method proposedby Jones(1983). Sincewe allow
any temporal formula in the set of initialisation conditions, they can be used
to capture assertionbases,which distinguish communication ports from other
variables as proposedby Pandya and Joseph(1991). Rely and pre conditions
appear conjoined as an assumption formula in the logical approach advocated
by Abadi and Lamport (1995) and by Jonssonand Tsay (1995), much in the
way that guaranteeand post conditionsareconjoinedin a commitment formula.
The separationadopted here seemsto help emphasisethe role of each distinct
set of properties in the veri�cation process.The distinctions we make are also
justi�ed by our desire to use just the rely-guarantee assertionsabove to deal
with dynamic con�guration and interaction. A more pragmatic reasonjusti�es
the adoption of a set of independently realisablepost-conditions. Most authors
consider that, if system behaviour or speci�ed operation terminates, this de-
termines a de�nite state satisfying all the post-conditions(Pandya and Joseph
1991). A wait clauseis sometimesintroduced to expressan invariant over the
states of non-terminating computations (Cau and Collete 1996). Becausewe
are dealing here with open systemswhich are never required to terminate but
in generaleventually validate each of a number of properties,we prefer to adopt
post-conditionsin the way de�ned above.

The reader may have correctly observed that with the de�nition above
we have attempted to stay as close as possible to the use of rely-guarantee
constructions in model and processbasedformalisms while taking advantage
of the temporal logical features of our own formalism. Let us examine some
practical situations that normally arise in designing software systemsin this
way. First, note that free variables may appear in the formulas of each set of
clauses. This is useful, say, in binding actor namesto the speci�cations they
comply with. Also note that each set of clausesmay be empty. In this case,
their respective logical value is equivalent to > , the rely-guarantee assertionis
simpli�ed and reasoningbecomeseasier.

Rely-guaranteeconstructionsare interestingnot only dueto the additional
expressivenessand disciplinethey introduceinto dealingwith globalphenomena,
but also becausethey may be decomposed and reused. A composition rule
is normally proposedto achieve these e�ects in the veri�cation process. The
following inferencerule plays this role here:
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Theorem 3.5.2 (Comp osition Rule) Given a theory presentation � = (�,
	) in obj SpecAct and

S
f r ely; guarg [ f init i ; prei ; posti j1 � i � 2g � G(�)

such that the resulting set is �nite, the following inferencerule is derivable:

(COMP ) 1: init 1 : f pre1; r elyg� f guar; post1g
2: init 2 : f pre2; guarg � f r ely; post2g

init 1 [ init 2 : f pre1 [ pre2; r ely [ guarg � f r ely [ guar; post1 [ post2g

Proof: Assumethat p 2 post1. We will show that the �rst premiseregarding
p can be transformed into a rely-guarantee assertionwhich complieswith the
format of the conclusion:
1. J init 1 ! Ass , D16-R G

X G(Jpr e1 ^ (Jr ely )W (p ^ Jguar ) ! (Jguar )U (p ^ Jguar ))
2. J init 1 ^ J init 2 ! AND-L 1

X G(Jpr e1 ^ (Jr ely )W (p ^ Jguar ) ! (Jguar )U (p ^ Jguar ))
3. Jpr e1 ^ Jpr e2 ^ (Jr ely ^ Jguar )W (p ^ Jr ely ^ Jguar ) ! Jpr e1 REFL , AND-L

4. (Jr ely ^ Jguar )W (p ^ Jguar ) ! REFL , AND-L , R2-G

(Jr ely )W (p ^ Jguar ) MON-GW , R1-MP +

5. (Jr ely ^ Jguar )W (p ^ Jr ely ^ Jguar ) ! REFL , AND-L , R2-G

(Jr ely ^ Jguar )W (p ^ Jguar ) MON-GW , R1-MP +

6. Jpr e1 ^ Jpr e2 ^ (Jr ely ^ Jguar )W (p ^ Jr ely ^ Jguar ) ! HS 5, 4

(Jr ely )W (p ^ Jguar ) AND-R +

7. Jpr e1 ^ Jpr e2 ^ (Jr ely ^ Jguar )W (p ^ Jr ely ^ Jguar ) ! AND-L 3, 6

Jpr e1 ^ (Jr ely )W (p ^ Jguar )
8. J init 1 ^ J init 2 ! X G(Jpr e1 ^ Jpr e2 ^ RTRAN , R1-MP 7, R2-G , EXP-GX

(Jr ely ^ Jguar )W (p^ Jr ely ^ Jguar ) ! (Jguar )U (p^ Jguar )) R1-MP , MON-X G , R1-MP , HS 2 +

9. G(Jr ely ^ Jguar ) ! A1-I , R2-G , MON-G

G(Jguar ! Jr ely ^ Jguar ) R1-MP +

10. G(Jr ely ^ Jguar ) ! RTRAN , R1-MP 9

((Jguar )U (p ^ Jguar ) ! (Jr ely ^ Jguar )U (p ^ Jguar )) MON-GU , R1-MP +

11. G(p ^ Jr ely ^ Jguar ! p ^ Jguar ) REFL , AND-L , R2-G

12. (Jguar )U (p ^ Jr ely ^ Jguar ) ! (Jguar )U (p ^ Jguar ) MON-GU , R1-MP 11

13. G(Jr ely ^ Jguar ) ! PERM , R1-MP 10, HS 12

((Jguar )U (p ^ Jr ely ^ Jguar ) ! (Jr ely ^ Jguar )U (p ^ Jguar )) PERM , R1-MP +

14. Jr ely ^ Jguar ! A1-I , RTRAN , INVE ,

(p ^ Jguar ! p ^ Jr ely ^ Jguar ) HS , D4-AND , HS +

15. G(Jr ely ^ Jguar ) ! R2-G 14, MON-G

G(p ^ Jguar ! p ^ Jr ely ^ Jguar ) R1-MP +

16. G(Jr ely ^ Jguar ) ! MON-GU , HS 15, LTRAN

((Jguar )U (p ^ Jguar ) ! (Jr ely ^ Jguar )U (p ^ Jr ely ^ Jguar )) R1-MP , HS 15 +

17. (Jr ely ^ Jguar )U (p ^ Jr ely ^ Jguar ) ! A1-I

((Jguar )U (p ^ Jguar ) ! (Jr ely ^ Jguar )U (p ^ Jr ely ^ Jguar ))
18. Jpr e1 ^ Jpr e2 ^ (Jr ely ^ Jguar )W (p ^ Jr ely ^ Jguar ) ! OR-L 16, 17

((Jguar )U (p ^ Jguar ) ! (Jr ely ^ Jguar )U (p ^ Jr ely ^ Jguar )) D10-W , AND-L +

19. J init 1 ^ J init 2 ! X G(Jpr e1 ^ Jpr e2 ^
(Jr ely ^ Jguar )W (p ^ Jr ely ^ Jguar ) ! (Jr ely ^ Jguar )U (p ^ Jr ely ^ Jguar ))

The last step in the derivation above is justi�ed by the following sequenceof
labels: A2-I , R1-MP 19, R2-G , EXP-GX , R1-MP , MON-X G, R1-MP ,
HS 8. Repeatingthe sameprocessfor all the elements of post1 anddevelopingan
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analogousargument regardingpost2, we concludethat the last sentenceabove is
derivable for all the elements of post1 [ post2. Note that this processterminates
becausethe involved setsareassumedto be �nite. Consideringthat JP1 ^ JP2 $
JP1 [ P2 for any Pi 2 f ini i ; prei ; r elyi ; guar i ; posti g, 1 � i � 2, an application of
D16 completesthe derivation of the conclusionof COMP . (COMP)

JonssonandTsay (1995)haveremarkedthat composition rulessuch asthe above
are a simple consequenceof the standard meaningof rely-guarantee assertions,
which requiresthe guaranteesto be valid when each post-condition is obtained
regardlessof the validit y of the assumptionsthen. Our De�nition 3.5.1captures
this meaning including Jguar in the secondargument of both W and U . Note
that the �rst connective is usedin the antecedent formula of the de�ned implica-
tion becausetherein the guaranteesand the post-condition cannot be assumed
to occur and the de�nition of unless,D10-W , ensuresthat this is the case.The
until connective adopted in the consequent of the sameimplication says that
theseformulas eventually obtain, accordingto RPL-UF . The theorem above
allows us to infer a more widely applicablecomposition rule as a corollary:

Corolary 3.5.3 (General Comp osition Rule) Given a theory presentation
� = (�, 	) in obj SpecAct and the �nite set

S
f init; pre;r ely; guar; postg [

f init i ; prei ; r elyi ; guar i ; posti j1 � i � 2g � G(�), provided that the following
side-conditionsare met, the subsequent inferencerule is derivable:

init 1 [ init 2 � init pre1 [ pre2 � pre r ely2 � r ely [ guar1

guar � guar1 [ guar2 post1 [ post2 � post r ely1 � r ely [ guar2;

(GCOMP ) 1: init 1 : f pre1; r ely1g� f guar1; post1g
2: init 2 : f pre2; r ely2g� f guar2; post2g

init : f pre;r elyg� f guar; postg

Proof: The proof is developed basedon the application of COMP usingthe side
conditions enumeratedabove and on the re�nement of the given premisesusing
the monotonicity of sometemporal connectives. (GCOMP)

This rule is moregeneralthan that proposedby Cau and Collete (1996)for com-
posing rely-guarantee assertionsabout synchronous messagepassingprocesses
becausewe do not require that each premiserefers to a single object only. An
analogueto their rule is obtained by providing two connectedspeci�cations � i ,
1 � i � 2, plus the respective morphismsin a way that their pushoutdetermines
�; init i , prei , r elyi , guar i and posti contain only local formulas parameterised
by n1

i 2 Vaddr and n2
i appearsfree in � i . Mapping assertionsabout each speci�-

cation into � using the given morphisms,GCOMP can be applied. Typically,
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init or pre would contain a formula like n1
i = n2

3� i , 1 � i � 2, to realisethe par-
allel composition of the speci�ed objects. More elaborated rules may deal with
hidden symbols which we do not feel necessaryherein view of the possibility of
organisingactor speci�cations in designstructures supporting hidden features,
in the way originally suggestedby Fiadeiro and Maibaum (1994). We will have
an opportunit y to illustrate the useof theserules and disciplinesin Chapter 5.

Now we may concludethe comparisonof our constructions and the dy-
namic algebraicoperations for manipulating actor components de�ned by Tal-
cott (1996b). The simplest such an operation is hiding, which is approximated
hereby postulating an initial actor con�guration usinginit and preventing some
objects from receivingmessagesfrom the outsideenvironment, usinginit or r ely
depending on whether this constraint is to be static or dynamic. Renaming is
another algebraic operation. It does not have a syntactic counterpart but is
ensuredwhenever we refrain from using constants of type addr. Finally, paral-
lel composition is obtained as outlined above. That somecomponents are not
composableis re
ected here by the impossibility of �nding non-empty sets of
equalisingassumptionsof the kind described above while preservingthe truth
of the antecedent of the resulting assertion. We devote the following sectionto
an exampleclarifying the veri�cation of rely-guarantee assertions.

3.6 Veri�cation of Global Prop erties

If the uniprocessortime-sharingarchitecture describedin Section3.4is to present
the behaviour outlined therein, that usercommandsare always processedeven-
tually, we must stipulate under which circumstancesthis property is expected.
Clearly, there are situations in which this is not established. Assumethat a
�nite number of terminals is connectedto a singleprocessorvia a bu�er. This is
the minimal condition we requireto ensurethat the property above makessense.
Without lossof generality, we postulate that there are exactly two terminals in
this con�guration. If other arbitrary objects apart from the processorcould re-
move commandsfrom the bu�er, if this last component could ignorecommands
from a speci�c terminal inde�nitely , the characteristic property above would not
be established. Consideringsuch properties as part of a rely-guarantee asser-
tion, we canprove that the characteristic property is indeedobtained. Adopting
the translations of birth action symbols in Figure 3.3, part (c), the de�nition
8x : y � p[x] def= 8x � Reach(y; x) ! p[x] and a similar onefor 9, both basedon an
auxiliary action symbol Reach, we state this assertionas follows:
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Assertion C
init k:new (bu�er ; n); k:new (processor; m; m; n); k:new (terminal ; t i ; n) (1 � i � 2);

G(8v � 8y : n � y:put(v) ! X G(: y:put (v))) ;
G(8y � (9v � y:send put ; n; v ()) ! y = t1 _ y = t2);
G(8v � 8x; y : n � 9z : x � z = y _ (: x:send put ; x:nxt; v ()) W (y:send put; y:nxt; v ()))

rely 8y � (9x : n � x:get(y)) ! y = m
pre 9y � y:rd(v) ^ (y = t1 _ y = t2); v 6= NEX

post m:exc(v)

Assertionssuch as C have the meaningdescribed in the previoussection.
The �rst three formulas under init say that the bu�er, processorand terminals
are consideredto be initially created and linked. This illustrates that the de-
signer, in order to be able to verify any global property, is required not only
to provide morphisms,allowing actors in di�erent communities to sharepart of
the samelanguage,but also to ensurethe existenceof some\logical" channels,
nameswhich bind actors to each other and enablemessagepassing.Init says in
addition that cellsof the bu�er can only consumeeach distinct commandonce,
a simplifying assumption,that put messagesare dispatched to the initial bu�er
cell n solely by one of the two terminals, and that each cell dispatchesa com-
mand to the subsequent bu�er element only if all the previouscellsof the bu�er
dispatched the samecommand in the past. The last two properties are static
con�guration constraints. The dynamic assumptionrely on the environment is
that the bu�er is only requestedto send commandsto the processorm. The
formulas under pre and post say that, providing the reading of an executable
usercommandfrom someterminal, the commandis eventually processed.Note
that no guaranteesare asserted(thus the respective set of formulas is empty)
becausewe are only interested in verifying the post-condition. One guarantee
o�ered by the speci�ed component which we could verify is that all processor
requestsare addressedto the bu�er, a direct consequenceof (13.13).

It is important to clarify that the assertionabove is expectedto be deriv-
able in an extensionof UTSA (namedUTSA 1) in which the meaningof Reach
is speci�ed. We adopt the axioms in Figure 3.4. Such auxiliary de�nitions are
conventional in formal methods, especially in model-basedformalisms (Jones
1990). Here we have to be careful in using such constructions since our sen-
tencesare required to belong to the languageof sometheory presentation. In
turn, the veri�cation of actor component properties often calls for global def-
initions such as that of Reach, which are not allowed by parameterisedactor
speci�cations. Moreover, any such auxiliary symbol would possessthe additional
properties entailed by our actor model axiomatisation. This is not desirablein
practice. To overcomethis problem, we rely on a functor mapping presentations
of our M SBTL extensioninto this underlying temporal logic. The functor maps
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beg ! : Reach(x; y) (3.6.1)

k:new (nil ; x) _ 9v � k:new (item; x; v) ! X (Reach(x; x)) (3.6.2)

(k:new (nil ; x) _ 9v � k:new (item; x; v)) ^ Reach(y; k) ! X (Reach(y; x)) (3.6.3)

k:new (nil ; x) _ 9v � k:new (item; x; v) _ I nv(Reach(x; x)) (3.6.4)

(k:new (nil ; x) _ 9v � k:new (item; x; v)) ^ Reach(y; k) _ x 6= y ^ I nv(Reach(y; x)) (3.6.5)

Figure 3.4: De�nition of Reach.

extra-logical axiomsvia the identit y and transformsthe logical axiomsinto sen-
tencesof the target theory presentation. Speci�cation morphismsare mapped
accordingly. In this way, we can still useour derived inferencerules as a valid
reasoningtechnique. Theory presentations allowing de�nitions as in Figure 3.4
and assertionslike C are consideredto be in an extensionof the functor image.
Hereafter,we ignore such technicalities for the sake of simplicity.

What is assertedby C is an instanceof the so-calledFair MergeProblem.
That is, the processingof sequencesof commandsfrom each user must be fair;
in other words, that each of them must not have the completionof its execution
inde�nitely delayed. To understandthe validit y of this assertion,�rst note that
the respectively linked bu�er cellsare organisedas a reversedqueue. Each cell
either processesincoming messagesor theseare forwarded to the remainder of
the bu�er, becausethe cell hasalreadybeenconsumedor is not the last element
of the queue,or elseeach messageis ignored,becausethe entire bu�er is empty.
Now, becausethe bu�er is required by init to receive messagesfrom the two
terminals only and theseactors eventually stop producing commandsaccording
to (12.2), the bu�er itself will always be �nite in any behaviour, meaningthat
commandswill be fairly stored in and retrieved from this component. Further-
more,sinceour assumptionrelyis that the bu�er is hidden from the environment
with respect to receiving get messages,only the processorwill recurrently re-
quest commandsand possibly receive a reply from the bu�er. Each command
dispatched by a terminal will be eventually processedin this way.

The explanation above doesnot clarify how the formulas in our assump-
tion were chosennor the criteria for their placement in one clauseor another.
The init clauseshould only contain formulas describing the initial state and
the static con�guration constraints that always hold about the component. The
pre-conditionsshouldjust trigger the eventual occurrenceof each post-condition.
Rely formulas are expected to be true until but not necessarilyincluding each
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of thesepost-condition occurrences.Note that we could have written our penul-
timate initialisation condition as part of our rely assertion. However, such an
assertionwould be too weak for our purposes:thosemessagesdispatched before
the occurrenceof the pre-conditioncould produceundesirableinterferencein the
behaviour of the architecture. On the other hand, reducingassumptionsto the
local delivery of messages,aswe did in proposingthe relycondition, corresponds
to ground our analyseson the \lo cal time" of each component (Clinger 1981).

The rigorous veri�cation of the assertionabove is basedon the de�nition
of a (relative) well-foundedrelation asexplainedin Section2.7. We proposean
extensionof UTSA 1 (named UTSA 2) and chooseto include in this extension
the following action symbol de�nition concerningbu�er cells:

R(n; x; y) $ Reach(n; x) ^ Reach(n; y) ^ y:nxt = x ^ y:lst = F (3.6.6)

In general,R doesnot de�ne a well-foundedrelation. If we take into account just
those cells reachable from the assumedinitial bu�er element n, a well-founded
relation is indeedde�ned. To verify this, we considerin the sequelthat UTSA 2

is also endowed with an unconstrained
exible symbol t of sort addr and that
formulas in each of the clausesof our assertionare linearly orderedaccordingto
their position in C to facilitate references.We omit almost all the details which
are not strictly necessaryfor comprehensionand perform the veri�cation in a
relativised context, consideringthat all the derived sentencesare always valid
strictly after the occurrenceof the initialisation condition. We are allowed to
reasonin this way provided that we refrain from usingtemporal logical inference
rules. Note that most of our derived inferencerulesarerelative to the occurrence
of the initialisation condition. Relativised rules similar to thosefor introducing
unconstrained 
exible symbols and well-founded induction can also be shown
admissible.

The two static characteristic properties of 
exible well-foundedrelations,
irre
exivit y and stabilit y, are veri�ed as follows:

[IRR] 8x � : R(n; x; x)

Considering that : R(n; x; x) $ : Reach(n; x) _ x:nxt 6= x _ x:l st = T , we
sketch this proof as follows, abbreviating as CREAT E(x; y) the formula 9v �
x:new(item; y; v) _ x:new(nil; y):
1. x:nil ! x:nxt 6= x _ x:l st = T (11.1)
2. x:item(v) ! x:nxt 6= x _ x:l st = T (11.2)
3. x:go^ (x:nxt 6= x _ x:l st = T ) ! X (x:nxt 6= x _ x:l st = T ) (11.5)
4. x:cons^ (x:nxt 6= x _ x:l st = T ) ! X (x:nxt 6= x _ x:l st = T ) (11.6)
5. x:link (y) $ 9v � x:new (item; y; v) (11.13), (11.9)
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6. 9v � x:new (item; x; v) ! 9v � x:new (item; x; v) REFL
7. 9v � x:new (item; x; v) ! /9v � x:new (item; x; v) _ CREAT E(x; x) OR-R 6
8. 9v � x:new (item; x; v) ! X G? EXIST 6, 7
9. 9v � x:new (item; x; v) ! ? 8, REFL-G , A11-X
10. 9v � x:new (item; y; x) ! x 6= y 9, A22-EQ
11. 9v � x:new (item; y; x) ! X (x 6= y) 10, RIGID
12. x:link (y) ! X (x 6= y) IFF-E 5, HS 11
13. x:link (y) ^ (x:nxt 6= x _ x:l st = T ) ! X (x:nxt 6= x _ x:l st = T ) 12, (11.7)
14. x:nxt 6= x _ x:l st = T SAFE 1-4, 13
15. : Reach(n; x) _ x:nxt 6= x _ x:l st = T A1-I , 14, D3-OR

[STAB] 8x; y � R(n; x; y) ! X (R(n; x; y))

The reader is asked to work out the full proof. Here we just outline the most
important proof steps:

R(n; x; y)
(3:6:6)

! Reach(n; x) ^ Reach(n; y) ^ y:nxt = x ^ y:lst = F
(3:3:1)

! Reach(n; x) ^ Reach(n; y) ^ y:nxt = x ^ y:lst = F^ G(: link (k))
INV

(3:6:1 � 5)
! G(Reach(n; x) ^ Reach(n; y) ^ y:nxt = x ^ y:lst = F)

(3:6:6)
! X (R(n; x; y))

To verify the two dynamic properties of well-founded relations, change
termination and anti-progressiveness,we have to develop a number of auxiliary
results �rst. We begin by showing that bu�er cells reachable from n obey a
causal law which prevents them from being at the sametime reachable from
and related by R to any other �xed cell (CA USAL ). Next we show that Reach
as de�ned in Figure 3.4 determinesa transitive relation (T- Reach). We also
prove that the directed binary relation determined by R with �rst argument
�xed on n is acyclic (A CYCLIC ). Then we proceedwith the veri�cation of
TERM and APR OG .

(CA USAL) 8z : n � 8y : z � : R(n; z; y)

First note that the following two sentencesare true as a consequenceof the
axioms in Figure 3.1 and 3.4:

beg ! (( : Reach(z; z))W (: Reach(z; y))) W (9k : n � CREAT E(k; y))

beg ! (: R(n; z; y))W (y:new(item; z) ^ Reach(n; y))
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Assumethat Reach(z; y) ^ R(n; z; y) is the case.Hence,k above hasto be equal
to y, but in this casethere would exist two actors z and y which create each
other and the resulting temporal paradox contradicts a consequenceof O7a
and EXIST . Generalisingthe negation of our assumptionto all the other cells
reachable from n clearly implies CA USAL .

(T- Reach) 8x; y; z � Reach(x; y) ! (Reach(y; z) ! Reach(x; z))

We write the body of the quanti�ed formula above as TRAN S(x; y; z). This
sentence is veri�ed using IND-b egG:

1. beg ! (Reach(y; z) ! Reach(x; z)) (3.6.1), NEG-L , PERM
2. beg ! 8x; y; z � TRAN S(x; y; z) 1, A1-I , HS , R5- 8
3. 9k � CREAT E(k; x) ! (Reach(x; x) ! X (Reach(x; x))) (3.6.2)
4. /9k � CREAT E(k; x) ! (Reach(x; x) ! X (Reach(x; x))) (3.6.3)
5. Reach(x; x) ! X (Reach(x; x)) 3, 4
6. CREAT E(x; y) ^ Reach(z; x) ! (3.6.4)

(z 6= x ^ Reach(z; y) ! X (Reach(z; y)))
7. : (CREAT E(x; y) ^ Reach(z; x)) ! (3.6.5)

(z 6= x ^ Reach(z; y) ! X (Reach(z; y)))
8. z 6= x ^ Reach(z; x) ! X (Reach(z; x)) 6, 7
9. 8x; y; z � TRAN S(x; y; z) ! X (8x; y; z � TRAN S(x; y; z)) 5, 8
10. G(8x; y; z � TRAN S(x; y; z) ! X (8x; y; z � TRAN S(x; y; z))) R2-G 9
11. 8x; y; z � TRAN S(x; y; z) IND-b egG 2, 10

(A CYCLIC) 8x; z : n � 8y : x; w : z � R(n; z; y) ! w 6= x

1. 8z : n � 8y : z � : R(n; z; y) CA USAL
2. 8z : n � 8y � Reach(z; y) ! : R(n; z; y) 1
3. 8z : n � 8x; y � Reach(x; y) ! (Reach(z; x) ! : R(n; z; y)) 2, T- Reach
4. 8z : n � 8x; y � 8w � w= x ! (Reach(x; y) ! (Reach(z; w) ! : R(n; z; y))) 3, A22-EQ
5. 8z : n � 8x; y � 8w � Reach(x; y) ! (Reach(z; w) ! (w= x ! : R(n; z; y))) 4, PERM
6. 8z : n � 8x; y � 8w � Reach(x; y) ! (Reach(z; w) ! (R(n; z; y) ! w 6= x)) 5, INVE
7. 8z : n � 8x; y � Reach(x; y) ! 8w : z � R(n; z; y) ! w 6= x 6, MO V-IF 8
8. 8z : n � 8x � 8y : x � 8w : z � R(n; z; y) ! w 6= x 7
9. 8x; z : n � 8y : x; w : z � R(n; z; y) ! w 6= x 8, A1-I

[TERM] FG(8x; y � : R(n; x; y) ! X (: R(n; x; y)))

First note that substituting p1 and q by > and p2 by init123-C in both NRESP
and NCOM , we obtain as a consequencethe following sentences:

init123-C ! X G(FG(/9x � x:send put; n; v ()) ! FG(: x:deliv (put ; v))) (3.6.7)

init123-C ! X G(FG(: x:deliv (put ; v)) ! FG(: x:put (v))) (3.6.8)
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Linking thesetwo sentencesand relying on init4-C and init6-C, we obtain after
init123-C:

FG(/9x � x:send put; n; v ()) ! 8y : n � FG(/9x � x:send put; y; v ()) (3.6.9)

We proceedwith the following derivation:
1. FG(8v � : t1:rd(v)) (12.2), init3-C
2. FG(8v � : t1:send tr ; n; v ()) 1, (12.5)
3. FG(8v � : t2:rd(v)) (12.2), init3-C
4. FG(8v � : t2:send tr ; n; v ()) 3, (12.5)
5. FG(8v � : t1:send tr ; n; v (^ ): t2:send tr ; n; v ()) 2, 4, DIST-ANDF G
6. FG(8x; v � : x:send put; n; v ()) 5, init5-C
7. 8y : n � FG(8x; v � : x:send put; y; v ()) 6, (3.6.9)
8. 8y : n � FG(8v � : y:deliv (put ; v)) 7, O9
9. 8y : n � FG(8v � : y:put(v)) 8, O11
10. 8y : n � FG(8v � : y:link (v)) 9, (11.13)
11. 8y : n � FG(8x � y:nxt 6= x _ y:lst = T ! X (y:nxt 6= x _ y:lst = T )) (11.5), (11.6)

10, INV +
12. 8y : n � FG(8x � : Reach(y; x) ! X (: Reach(y; x))) (11.9), (11.13)

10, (3.6.5) +
13. : R(n; x; y) $ : Reach(n; x) _ : Reach(n; y) _ y:nxt 6= x _ y:lst = T (3.6.6)
14. FG(8x; y � : R(n; x; y) ! X (: R(n; x; y))) 11, 12, 13, T- Reach

BAR C-F G

[APR OG] G(8x � t = x ! X (t = x _ R(n; t; x))) ! FG(8x � t = x ! X (t = x))

Supposethat the antecedent of the implication above is the casebut the conse-
quent of the sameformula is not. This assumptionimplies

GF (9x � t = x ^ X (R(n; t; x)))

As a result, sinceR with �rst argument �xed on n is acyclic, the value of t can
only forever eventually decrease. This generatesa contradiction with STAB
and TERM , which say that the samerelation eventually stops changing and
then relatesjust a �nite number of mail addressesreachable from n.

Now that we know R de�nes a well-foundedrelation relative to the initial
bu�er cell n, we can continue the veri�cation of our rely-guarantee assertion
applying our relativised version of the inferencerule WELL . As it turns out,
however, we are obliged to develop a number of auxiliary results to support an
application of such a rule. Sincethe processoris the most \activ e" component of
the speci�ed architecture, we examinethe propertiesof this actor �rst. Weshow
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below that each previouslyprocessedcommandcannever be the non-executable
one(NEX ) after the processorbecomeslive:

1. v = NEX ! A (: m:rec(v)) (13.11), INVE , DUAL-AE
2. : m:rec(NEX ) 1, REFL-A , A22-EQ
3. : m:exc(NEX ) 2, (13.8), cmd Ax
4. m:exc(v) ^ m:pr v 6= NEX ! X (m:pr v 6= NEX ) 3, (13.3)
5. m:pr v 6= NEX ! G(m:pr v 6= NEX ) 4, INV
6. m:pro(n; p) ! F(m:pr v 6= NEX ) (13.2), (13.3)
7. FG(m:pr v 6= NEX ) 6, 5, init2-C, O7a

The fact that invalid commandsare (eventually) never executedis impor-
tant becausethis is an invariant property of the processorwhich enablesthe
delivery and consumption of messages.This property allows us to show that
any executablecommanddispatched to the processoris eventually executed:

8. m:rec(v) ! F(m:exc(v)) (13.7)
9. m:pr v 6= NEX ^ v 6= NEX ! FE (m:rec(v)) (13.14)
10. m:deliv (rec; v) ! RESP 4, 8, 9

X (F(m:pr v 6= NEX ^ v 6= NEX ) ! F(m:exc(v)))
11. XF (m:pr v 6= NEX ) 7, COM-F G, RPL-GX
12. m:deliv (rec; v) ! F(v 6= NEX ! m:exc(v)) 11, 10, MON-X , RIGID
13. m:pr v 6= NEX ^ v 6= NEX ! FE (m:deliv (rec; v)) (13.13)
14. 9k � k:send rec; m; v (! ) COM 4, 12, 13

X (F(m:pr v 6= NEX ^ v 6= NEX ) ! F(v 6= NEX ! m:exc(v)))
15. 9k � k:send reply; m; v (^ )v 6= NEX ! F(m:exc(v)) 11, 14, MON-X , RIGID

Another important property exhibited by the processoris that nop mes-
sagesare always eventually self-dispatched and consumed. As a result, the
processorkeepsrequestingcommandsfrom the bu�er regularly:

16. m:exc(v) ^ m:id = x ^ m:in = y ! X (m:id = x ^ m:in = y) (13.4)
17. m:id = x ^ m:in = y ! G(m:id = x ^ m:in = y) INV 16
18. G(m:id = m ^ m:in = n) 17, (13.1), init2-C
19. m:nop ! F(m:nop) REFL , D8-F
20. m:pr v 6= NEX ! FE (m:nop) (13.12)
21. m:deliv (nop) ! X (F(m:pr v 6= NEX ) ! F(m:nop)) RESP 4, 19, 20
22. m:deliv (nop) ! F(m:nop) 11, 21, MON-X
23. m:pr v 6= NEX ! FE (m:deliv (nop)) (13.12)
24. m:send nop; m (! )X (F(m:pr v 6= NEX ) ! F(m:nop)) COM 4, 22, 23
25. m:send nop; m (! )XF (m:nop) 11, 24, MON-X
26. m:nop ! XF (m:nop) 18, 25, (13.6)
27. F(m:nop) ! GF (m:nop) 26, IDEM-G , IND-G
28. GF (m:nop) 27, (13.2), init2-C
29. GF (m:send req; n; m ()) 18, 28, (13.5)



3.6. Veri�cation of Global Properties 129

We wish to apply our well-founded induction rule using the new relation
symbol R to prove that valid commandsproduced in one of the two terminals
and dispatched to the bu�er are eventually processed. Two other properties
are required to ensurethat the connectionsbetween terminals and bu�er and
betweenthis last component and the processorpresent the expectedbehaviour:

m:send req; n; m (! )F(n:deliv (get; m)) (3.6.10)

t i :send tr ; n; v (! )F(n:deliv (put ; v)) (3.6.11)

The omitted veri�cation of theseproperties is analogousto that of (15).
Becausewe know that each typed commandis eventually delivered to the

bu�er (3.6.11), the processoris always eventually producing new commandre-
quests (29), the requestsare eventually delivered to the bu�er (3.6.10), and
that valid commandsdispatched as a result by the bu�er are eventually pro-
cessed(15), we candevelopour inductive argument taking only into account the
bu�er speci�cation. We proposean inductive assertionsaying that, whenever a
valid commandis delivered to a bu�er cell x (dind [x]) and the samecell always
eventually receives requestsfrom the processor(r ind [x]), provided that just the
processoris allowed to consumethe contents of such bu�er cell or its sucessor
(cind [x]), in the future either there is a cell in the bu�er dispatching the newly
depositedcommandto the processor(qind ) or there is another cell y related to x
for which the sameproperty obtains (pind [y]). Applying our induction rule, we
reach a conclusionwhich, when connectedto the properties mentioned above,
correspondsto our rely-guarantee assertion.We usethe following abbreviations
to write our inductive assertion:

dind [x] def= Reach(n; x) ^ x:deliv (put; v) ^ v 6= NEX

r ind [x] def= GF (x:deliv (get; m))

cind [x] def= (8y � (x:get(y) _ x:nxt: get(y) ^ x:l st = F) ! y = m)W (qind )

pind [x] def= dind [x] ^ r ind [x] ^ cind [x]

qind def= 9k : n � k:send reply; m; v (^ )v 6= NEX

In this way, our induction assertionbecomes:

8x � pind [x] ! F(qind _ 9y � R(n; y; x) ^ pind [y]) (3.6.12)

Let us informally justify the derivabilit y of (3.6.12). First note that, be-
causeof (11.9) and (11.10), whenever a put messageis delivered and subse-
quently consumedby a bu�er cell x, either the current cell is the last in the
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bu�er and in this casea newoneis createdto storethe messagecontents therein
or the messageis forwardedto the subsequent bu�er element. In the former base
case,consideringthat what has just been stored in the bu�er is a valid com-
mand, becausex is assumedto always eventually receive get messagesfrom the
processor,accordingto r ind [x], and can only processone such get message,by
cind [x] and the last step in the veri�cation of (3.3.1) in Section 3.3, the �rst
of thesemessageswill consumethe commandv or alternatively the subsequent
cell will have the samecontents consumedsometime in the future, since the
next cell eventually satis�es both requirements. In either case,qind is obtained.
Otherwise, if the cell is not the last in the bu�er, (11.10) guarantees that the
next existing cell y related to x will eventually satisfy pind [y]. Assumingthat x
is reachable from n, it is not di�cult to prove using the axioms in Figure 3.4
that n, x and y are related by R.

The application of our well-founded relation rule to (3.6.12) yields the
following sentence:

(9x � pind [x]) ! F(qind ) (3.6.13)

First of all, note that pind [n] implies 9x � pind [x]. For any v 6= NEX , (3.6.11)
implies dind [n]. In addition, rely12-C leadsto cind [n] and the formula r ind [n] is
a consequenceof the proof step (29) above when connectedto (3.6.10). Fi-
nally, qind implies post-C when connectedto (11). Putting theseconsiderations
together and reintroducing our initialisation condition, we concludethe veri�-
cation of C.

As a �nal observation in this section,it is worthwhile mentioning that the
necessity of using temporal sentencesto establish in a (pseudo)-�nitary man-
ner the well-foundednessof binary relations within �rst-order temporal logic
reinforcesthe point of view that complexdynamic data typessuch as lists and
queuesshould be treated as �rst classobjects (Agha 1986,Milner et al. 1992).
Using our formalism, it would not be possibleto perform otherwiseany kind of
inductive reasoningover their structure in order to verify livenessproperties.

3.7 A Plethora of Mo des of In teraction

Apart from the asynchronous mode of messagetransmission assumedin the
actor model, components of real distributed systemsmay also interact through
point-to-p oint messagepassingmodeswhich require more synchrony. Charron-
Bost et al. (1996)de�ne a hierarchy of increasinglymoresynchronousinteraction
modes, where FIF O communication is mentioned as an example in which the
messagesexchangedbetweeneach two components must be received in the order
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Considering:
k 6= n
ackc � r epc
origc � idc (b) sendern

n:ackc

n:deliv (ackc);

n:send c;k ();
n:send origc; k; n ()

k:deliv (idc; n);
k:c

k:deliv (c);

k:deliv (idc; n);
k:idc(n)

k:idc(n)

k:deliv (c);
k:c

(a) recipient k

k:send r epc; n ()

Figure 3.5: Protocol for ensuringsynchrony of recon�gurable objects.

they are sent. We show in this sectionthat theseother modesof interaction can
alsobecapturedin terms of actors. In this way, weshall beableto concludethat
the asynchrony assumptiondoesnot really restrict expressive power in designing
open recon�gurable systems.

In order to illustrate in a direct way how to support other modes of in-
teraction in terms of the actor model, we would simply have to provide a set
of examplespeci�cations describingobjects that behave accordingly. Instead,
we prefer to adopt a standard generictechnique in distributed systemstheory
de�ning transformations which, when applied to a complexdescription like our
architecture speci�cation in Section3.6,guarantee that the resulting description
ensuresthe required property. SeeLiu and Joseph(1992) for transformations
ensuringfault toleranceand Hadzilacosand Toueg(1994)for transformationsin
the mode of interaction of broadcastingprograms. To exemplify this technique,
we chooseto addresshere only the full synchrony case,since the de�nition of
actor speci�cation transformationsmay have to be quite elaborate | in the case
of FIFO communication, for example,we could chooseto associate messagesto
sequencenumbers. Moreover, becauseour research is concernedonly with soft-
ware design,we stick to this level of abstraction dealing with speci�cations as
basesubject of transformation, in contrast to the programsused in the afore-
mentioned work. We also adopt the samecategorical techniques of previous
sections.
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Objects that interact via asynchronouspoint-to-p oint messagepassingcan
be transformed into synchronous onesby obliging each dispatched messageto
be acknowledgedand by forcing the originating object to stay in a wait state
until such an acknowledgement is received. Then, the normal behaviour can
be resumed. However, becausewe considerrecon�gurable systemshere, some
additional treatment is required to inform the recipient of each messageabout
the originating object mail address,to prevent the senderfrom automatically
deadlocking or dispatching unsolicited responsesif self-addressedmessagesare
dispatched. One way of treating the �rst problem while preservingthe original
speci�cation is to force the recipient of each messageto enter into an auxil-
iary state which is abandonedonly if both messageand originator addressare
received. This behaviour is illustrated by the diagram in Figure 3.5.

We formalisethe synchrony transformation in terms of actor speci�cations
and morphisms. This is done by de�ning an extensionof each given signature
with the additional symbols in Figure 3.5 and each set of axiomswith the syn-
chronisation properties described above. The following de�nition captures this
transformation:

De�nition 3.7.1 (Sync hron y transformation) Given a actor speci�cation
� 1 = (� 1; 	 1) in obj SpecAct , a speci�cation morphism� 1

�! � 2 in morph SpecAct

obeyingthe following conditions is said to represent a synchrony transformation:
The signature� 2 is determinedby the � 1-imageunder � and the following con-
ditions:

1. � 2 = (� (S1) [ f boolg, � (
 1) [ f Tbool; Fbool; NOT bool! boolg);

2. For each symbol c 2 � e1 � eb1
, type(c) = hs1; : : : ; sn i , there are ack� (c) 2

� (l2 � lb2 )\ (e2 � eb2 ) and switch � (c) 2 � c2 of type haddr; � (s1); : : : ; � (sn)i ; and
wait � (c) 2 A 2 such that type(wait � (c) ) = haddr; � (s1); : : : ; � (sn)i ! bool;

3. For each c 2 � l1 � lb1
, type(c) = hs1; : : : ; sn i , there are f r ep� (c) ; id � (c)g 2

� (l2 � lb2 )\ (e2 � eb2 ) andr id � (c) 2 � c2 , all of theseof typehaddr; � (s1); : : : ; � (sn )i ;
rmsg� (c) 2 � c2 such that type(rmsg� (c)) = h� (s1); : : : ; � (sn )i , andsyn� (c) 2
A 2 such that type(syn� (c) ) = haddr; � (s1); : : : � (sn); booli ! bool

4. For each c 2 � (e1 � eb1 )\ (l1 � lb1 ) , r ep� (c) = ack� (c) .

The set 	 2 is determinedby � (	 2) and the three familiesof axiomsbelow.
The �rst of thesede�nes the behaviour of actors playing the senderrole in the
protocol description above:

(S1)
V

c2 � (� e1 � eb1
)

8~vc � n:init ! n:wait c(m; ~vc) = F
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(S2)
V

c2 � (� e1 � eb1
)

8~vc � n:switch c(k; ~vc) ^ n:wait c(k; ~vc) = x ! X (n:wait c(k; ~vc) = NOT (x))

(S3)
V

c2 � (� e1 � eb1
)

8~vc � : n:switch c(k; ~vc) ^ n:wait c(k; ~vc) = x ! X (n:wait c(k; ~vc) = x)

(S4)
V

c2 � (� e1 � eb1
)

8~vc � (n:send c;k; ~vc (_)n:ackc(k; ~vc)) ^ k 6= n ! X (n:switch c(k; ~vc))

(S5)
V

c2 � (� e1 � eb1
)

8~vc � n:switch c(k; ~vc)  (n:send c;k; ~vc (_)n:ackc(k; ~vc)) ^ k 6= n

(S6)
V

c2 � (� e1 � eb1
)

d2 � (� l 1 � l b1
)

8~vc; ~vd � n:d( ~vd) _ n:deliv ( ~vd) ! n:wait c(k; ~vc) = F

(S7)
V

c2 � (� e1 � eb1
)

8~vc � n:wait c(k; ~vc) = T ! FE (n:deliv (ackc; k; ~vc)) ^ FE (n:ackc(k; ~vc))

The secondfamily of axioms speci�es the behaviour of actors playing the
receiver role, which is considerablymore complexthan the previousone:

(R1)
V

c2 � (� l 1 � l b1
)

8~vc � n:init ! n:sync(k; ~vc; x) = F

(R2)
V

c2 � (� l 1 � l b1
)

8~vc � n:r msgc( ~vc) ^ n:sync(k; ~vc; T ) = x ! X (n:sync(k; ~vc; T ) = NOT (x))

(R3)
V

c2 � (� l 1 � l b1
)

8~vc � n:r idc(k; ~vc) ^ n:sync(k; ~vc; F) = x ! X (n:sync(k; ~vc; F) = NOT (x))

(R4)
V

c2 � (� l 1 � l b1
)

8~vc � : n:r idc(k; ~vc) ^ : n:r msgc( ~vc) ^ n:sync(k; ~vc; x) = y ! X (n:sync(k; ~vc; x) = y)

(R5)
V

c2 � (� l 1 � l b1
)

8~vc � n:c( ~vc) ^ /9k � n:sync(k; ~vc; F) = T ! X (n:r msgc( ~vc))

(R6)
V

c2 � (� l 1 � l b1
)

8~vc � n:c( ~vc) ^ n:sync(k; ~vc; F) = T ! X (n:send repc; k; ~vc (^ )n:r idc(k; ~vc))

(R7)
V

c2 � (� l 1 � l b1
)

8~vc � n:id c(k; ~vc) ^ n:sync(k; ~vc; F) = T ! X (n:r idc(k; ~vc))

(R8)
V

c2 � (� l 1 � l b1
)

8~vc � n:id c(k; ~vc) ^ n:sync(k; ~vc; T ) = T ! X (n:send repc; k; ~vc (^ )n:r msgc( ~vc))

(R9)
V

c2 � (� l 1 � l b1
)

8~vc �n:send repc; k; ~vc ()  n:id c(k; ~vc )̂ n:sync(k; ~vc; T ) = T_n:c( ~vc )̂ n:sync(k; ~vc; F) = T

(R10)
V

c2 � (� l 1 � l b1
)

8~vc � n:r msgc( ~vc)  n:id c(k; ~vc)^ n:sync(k; ~vc; T ) = T _ n:c( ~vc)^ /9k � n:sync(k; ~vc; F) = T

(R11)
V

c2 � (� l 1 � l b1
)

8~vc �n:r idc(k; ~vc)^k 6= n  n:id c(k; ~vc)^n:sync(k; ~vc; T ) = F_n:c( ~vc)^n:sync(k; ~vc; F) = T

(R12)
V

c2 � (� l 1 � l b1
)

8~vc � n:id c(k; ~vc) _ n:deliv (idc; k; ~vc) ! n:syncc(k; ~vc; F) = F

(R13)
V

c2 � (� l 1 � l b1
)

8~vc � n:c( ~vc) _ n:deliv (c; ~vc) ! n:syncc(k; ~vc; T ) = F

(R14)
V

c2 � (� l 1 � l b1
)

8~vc � n:sync(k; ~vc; F) = F ! FE (n:deliv (idc; k; ~vc)) ^ FE (n:id c(k; ~vc))

Finally, we alsoneedto proposea family of axiomsde�ning the additional
behaviour of actors playing both roles in the sameinteraction, i.e., thoseactors
self-addressinga message:



134 Chapter 3. DesigningOpen Recon�gurable Systems

(SR1)
V

c2 � (� ( e1 � eb1
) \ ( l 1 � l b1

) )
n:send c;n; ~vc (! )F(n:id c(n; ~vc))

(SR2)
V

c2 � (� ( e1 � eb1
) \ ( l 1 � l b1

) )
n:send c;n; ~vc (! )( : n:deliv (c; ~vc))W (n:id c(n; ~vc))

(SR3)
V

c2 � (� ( e1 � eb1
) \ ( l 1 � l b1

) )
8~vc � n:send c;n; ~vc ( )n:sync(n; ~vc; F) = F

Let us clarify the meaningof the �rst set of axioms. S1 assertsthat the
originator is not initially in await state, i.e. blocked. S2 and S3 say that
this state is only reached and abandoneddue to the occurrenceof the local
computation switch c. This computation is causedand only happensdue to the
dispatch of the messagec or the acknowledgement of its receipt, according to
S4 and S5. Note that self-addressedmessagesare excludedfrom this causality
relationship. S6 speci�es that the wait state consistsin forbidding the delivery
and processingof base speci�cation messages.Finally, S7 assertsthat it is
eventually possibleto receive and processa messagereceipt acknowledgement
in a wait state.

The secondsetof axiomsis similar to the previousone,but addressesmore
complexsituations facedby actors performing the recipient role. Recipients are
not initially in await state, which is reached if either the contents of a message
or the senderaddressare processedby local computations, which happen only
becauseof the processingof the respective messages.This is what R1-8 deter-
mine. R9-11 de�ne the precedenceconditions which hold about the occurrence
of local computations and the dispatch of replies. Note that we leave untreated
local computationsdealingwith the identi�cation of self-addressedmessagesbe-
causein this casethe recipient would alsobe playing the originator role and this
is to be treated by the subsequent set of axioms. R12 says that await states
are not strict, preventing only the delivery and consumptionof dispatched mes-
sageidentities with contents identical to previously consumedbut not identi�ed
ones. R13 states the sameregarding the delivery and consumptionof message
contents. R14 is the usual enablednessaxiom concerningid.

To complete the speci�cation of the synchrony protocol, we proposethe
third set of axioms above. SR1 says that the dispatch of self-addressedmes-
sagesimplies that they are eventually self-identi�ed using the respective local
computation. Additionally , SR2 prevents the delivery of self-addressedmes-
sagesfrom happening beforeself-identi�cation. As a result of theseaxioms,we
have that whatever causesthe dispatch of a self-addressedmessagealso causes
a self-identi�cation. The remaining axiom, SR3, requires that self-addressed
messagesbe dispatched only if previously dispatched identical messagesare to
be delivered and processed�rst. With this special treatment of self-addressed
messages,weprevent the components complyingwith the resulting speci�cations
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from deadlocking strictly asa result of the transformation4. It is alsoimportant
to mention that, due to the sametreatment, the speci�cation of the transfor-
mation in the form of a morphism has to be stated at the global level. This
happensbecausethe speci�ed extendedbehaviour considersthat it is necessary
for each object to have knowledgeabout its own name. Otherwise, it would not
be possibleto expect the acknowledgement of the receipt of each message.As
usually present in many object-basedprogramming languagesin the form of a
built-in object variable, the existenceof a self attribute symbol in our formalism
would allow us to proposea local de�nition for the transformation above.

Note that, by formalising the transformation in the way above, we obtain
a method which is not fully compositional in that, if applied to each member
in isolation originating a co-limit diagram, i.e., to each given speci�cation, the
connectionof the resulting objectsby a co-limit of speci�cation morphismswould
not automatically correspond to the application of the same transformation
to the co-limit object of the whole original diagram. This happens because
somemessagesymbols which have to be equalisedby the transformation could
remain untreated, namely those related by � in Figure 3.5. To con�rm this in
practice, the reader is invited to apply the transformation to Component1 ,
Terminal and BufferCell , and to observe that not every pushout of the
transformation of Connector1 along arbitrary morphismsinto the latter two
speci�cations after transformation equalisesacktr and repput , origtr and idput .
This only happensusingmorphismsthat conformwith the translation of the base
speci�cation symbols and translate the auxiliary onesaccordingly.

Someother subtleties result from the application of the transformation
above. For instance, safety properties are not necessarily\preserved". The
typical exampleis the emergenceof deadlocks (Charron-Bost et al. 1996). These
may appear not only due to a misleadingde�nition (which we have striven to
avoid in De�nition 3.7.1), but also becauseof the speci�c properties captured
by the original speci�cation. It must also be clear that, if someobjects satisfy
the requirements of a transformedspeci�cation, they cannot freely interact with
an environment which does not obey the samerequirements. For example, a
messagewhich is received from an environment which never bothers to identify
the sendereventually leadsto a deadlock. In other words, the transformation
reducesopenness. This is not surprising: in methods wherein each message
is augmented with protocol dependent information | see(Sturman and Agha
1995)for an example| an object that doesnot comply with the protocol may
not have su�cien t knowledgeto deal with extendedmessages.

4Note that thesecomponents may deadlock anyway while adopting a synchronousmode of
interaction due to their inherent properties.
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Despitethe limitations of our method enumeratedabove, it is important to
recall that it is indeedpossibleto represent synchronousand other lessstringent
modesof interaction in terms of the actor model. An exampleof a synchronous
system is obtained by applying the transformation above to the speci�cation
UTSA and by consideringthe resulting systemas described in Section3.6.

3.8 Actors and Dynamic Subclassing

It hasbecomecustomary to considerthe notion of classin object-baseddesign.
Classesarecollectionsof objectswhich obey the samede�nition, be it a program
or a speci�cation5. They are normally coupled not only to a method which
permits easyreuseof de�nition parts, inheritance, but alsoto a relation between
properties of classelements, subtyping. Due to the inclusion relation between
sets,a sub-classrelation is readily induced. Thesenotions are not assumedin
the de�nition of the actor model, accordingto Wegner(1987); so, they can be
easily superimposedto produce a particularised model. Taking speci�cations
into account, here we may consider that actor communities are classes,the
respective speci�cation morphisms determine relations of (possibly multiple)
inheritance and the induced notion of theory inclusion characterisessubtyping.

The introduction of the notions above in the actor model doesnot appear
to be interesting per se. Nevertheless,it can lead to an elegant treatment of
extensibility other than just by meansof object creation and recon�guration.
Many authors including Wieringa et al. (1995)have studied dynamic notions of
classwhereinobjects are allowed to migrate from a classto another at run time.
This is called dynamic sub-classing. In our exampleconcerningbu�er cells, it
would be possiblein this way to allow cellsin the Full classto becomeEmpty .
Formally, Wieringa et al. (1995) considerthat a non-trivial dynamic partition
of a classis a collection of setsof classelements such that their union is equalto
the whole class,thesesetsare pairwise disjoint and, in addition, there is some
behaviour in which an object goes from one set to another, for each two such
sets in the dynamic classpartition. A dynamic subclass, in turn, is a set in a
dynamic partition of a class.By allowing an object to migrate betweendynamic
subclasses,it is possibleto support extension(and restriction) of functionality.

In this context, let us look at our previousexamplein more detail. Figure
3.6 illustrates how bu�er cellscanbe organisedtaking into account the notion of
dynamic subclass.There are two ways of dynamically partitioning such a class,
not only according to the empty or full character of cells but also considering

5Here we need to clarify that this is just one of the many possible de�nitions of class
available in the literature
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Figure 3.6: Bu�er cellsand related dynamic subclasses.

that they may or may not be logically linked to other similar objects. In the
picture, we represent the classand its respective subclassesusing boxes,which
are divided in three regionsto allow the representation of the name, attribute
and action symbols of the class. The relation of being a member of the same
dynamic partition of a classis represented using connecteddashedlines, which
are joined together to expressthe fact that a set of dynamic subclassesis being
de�ned. Similar diagramsare usual in object-oriented design.

Weadopt someauxiliary notation in this kind of informal softwarediagram
to expresshow an object is identi�ed as a member of a dynamic subclass. To
this e�ect, Wieringa et al. (1995) useboth logical classpredicatesand retracts
in more detailed speci�cations. Here, becausewe prefer to use our distinct
underlying formalism, we chooseinsteaddynamic subclassselectors,which must
be provided as part of each superclassspeci�cation. We use on as a keyword
in each diagram to say which attribute plays this role. Note that each value
determining subclass membership is written as a diagram annotation in the
picture and this set of valuesmust be in a one to onecorrespondencewith the
dynamic classesin the partition. Someactions in the respective subclassesare
alsoneededto capture the events of subclassmigration.

In our example,void distinguishesfull from empty cells. The action cons
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Figure 3.7: Static con�guration of the dynamic subclassesof Cell .

is responsiblefor the migration of objects from oneclassto the other. The pair
consistingof lst and link plays the samerole with respect to the partition of cells
into those which are linked or alone. In this situation, we must also treat the
birth of objects in the respective subclasses.Wieringa et al. (1995) remark that
only species, smallestclassespartitioning the universesuch as Full \ Linked ,
shouldbeassignedto creationevents. In our example,such events correspond to
the occurrenceof either item or nil dependingon whether or not the cell is to be
full or empty. Cells are createdisolated and thus the prescription to introduce
creation events only in speciesis ful�lled. The use of birth action symbols to
represent object creation uncovers an important issue: that objects of diverse
sub-classesmay needto usethe samesymbol to requesta birth. Sinceeach class
hasa separatespeci�cation, this can only be treated by requiring the existence
of morphisms to identify these symbols as representing the sameevent. For
instance,a pair of morphismscan make explicit that the action item of Linked
is the sameas in the Full class.As a result, we obtain that informal diagrams
as in Figure 3.6 resemble the structure of the categoricaldiagram with reversed
arrows that could be usedto describe the samesituation. A co-limit diagram
describingthis classstructure can be organisedas in Figure 3.7.

The formal diagramin the aforementioned �gure doesnot make such sense
without a de�nition of the related speci�cations. Theseare presented in Figure
3.8. We considerthat the involved morphismsare all identities. The axioms in
thosespeci�cations correspond to the propertiesof BufferCell , which turned
out to becapturedin separatedsetsof axiomsby the approach basedon dynamic
sub-classing. Class selectors,birth and migration actions are all included in
the superclassspeci�cation. Each sub-classspeci�cation only constrains the
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Speci�cation Cell
data typ es addr; bool; int (T ; F : bool)
attributes void; lst; up : bool
actions nil ; item(int) : lo cal + extrn birth ;

go; const; link( addr) : lo cal computation ;
put (int); get(addr) : lo cal + extrn message;

axioms k; n : addr; v : int; x; y : bool
go^ void = x ^ lst = y ! X (up = T ^ void = x ^ lst = y) (14.1)
cons^ lst = x ^ up = y ! X (void = T ^ lst = x ^ up = y) (14.2)
link (n) ^ void = x ^ up = y ! X (lst = F ^ void = x ^ up = y) (14.3)
up = T ! FE (deliv (put ; v)) ^ FE (put(v)) ^ FE (deliv (get; n)) ^ FE (get(n)) (14.4)

End

Speci�cation Empty = �2(Cell ) +
axioms
nil ! void = T ^ lst = T ^ up = F (15.1)
nil ! X (go) (15.2)

End

Speci�cation Full = �3(Cell ) +
attributes val : int;
actions reply(int) : extrn message
axioms n : addr; v : int
item(v) ! val = v ^ void = F ^ lst = T ^ up = F (16.1)
item(v) ! X (go) (16.2)
go^ val = v ! X (val = v) (16.3)
get(n) ^ void = F ^ val = v ! X (send reply; n; v (^ )cons) (16.4)
send reply; n; v (_)cons get(n) ^ val = v ^ void = F (16.5)

End

Speci�cation Linked = �4(Cell ) +
attributes nxt : addr;
axioms k; n : addr; v : int
link (n) ! X (nxt = n) (17.1)
go^ nxt = n ! X (nxt = n) (17.2)
put (v) ^ lst = F ^ nxt = n ! X (send put; n; v ()) (17.3)
get(n) ^ void = T ^ lst = F ^ nxt = k ! X (send get; k; n ()) (17.4)
put (v) ^ lst = T ! X (9n � new (item; n; v) ^ link (n)) (17.5)
send put; k; v ( )put (v) ^ nxt = k ^ lst = F (17.6)
send get; k; n ( )get(n) ^ nxt = k ^ void = T ^ lst = F (17.7)
9n � new (item; n; v) _ link (n)  put (v) ^ lst = T (17.8)

End

Figure 3.8: Speci�cation of the distinct dynamic subclassesof Cell .
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properties of the symbols that appear inside the respective boxesin Figure 3.6.
We are obliged to choosethis structure for speci�cations of the classhierarchy
by the logical properties of our underlying model. It is important to emphasise
that becauseof the locality property, an object in a speci�c dynamic classmay
only change the object attributes speci�ed in the respective classdescription.
Sincedynamic subclassesmust not be de�ned at run time but at the time of
systemdescription, we seethat the advantage dynamic sub-classingappearsto
o�er is the modularisation of component descriptions. Since the actor model
can already deal with the notions of state and change,we can simply capture
this other dynamic notion by adopting a speci�c designdiscipline.

3.9 Summary and Related Work

In this chapter, we have particularised the logical systempreviouslyproposedin
order to support the designof openrecon�gurablesystemsin a morefaithful way.
We choseto provide built-in support for the actor model, which capturesboth
opennessand recon�gurabilit y. The structure of each signature was specialised
to cater for the �ner distinctions between the families of symbols present in
each actor speci�cation. A set of logical axioms was proposedto capture such
distinctions in meaningand to poseadditional constraints in the speci�ed object
behaviour. We also de�ned a syntactic way of composing actor speci�cations
through the samecategoricalconstructionsstudied in the previous chapter. A
rely-guarantee discipline supporting the veri�cation of dynamic properties was
established.An examplewas usedto illustrate local and global reasoning.

The use of additional logical symbols to represent complex object be-
haviour is not new. Ehrich et al. (1988) introduced the idea of adding a new
argument in each signaturesymbol to represent object identit y. Wieringa et al.
(1995)usedadditional 
exible symbols to represent classesand object existence.
As an alternative to both techniques,we could have adoptedsort symbols with
a 
exible meaning, at the expenseof using a substantially more complex un-
derlying temporal logical system. In any case,the introduction of such logical
symbols and the use of a set of abbreviations appears to be the best choice
when we considerthat unique identi�cation of objects and messageshas to be
supported without loosingour intuitions about the actor model.

In the literature on actors, we can �nd plenty of exampleson rigorous
approachesto the model. Talcott (1996a)providesan operational semantics for
actors de�ned in terms of the application of rewriting logic rules. The inference
rulesof linear logic play the samerole in the work of Darlington and Guo (1995).
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The detailed operational semantics in (Agha et al. 1997)is de�ned in terms of a
transition relation on actor con�gurations. All theseworks appear to deal with
the semantics of actor programs only. The early studies of Hewitt and Baker
(1977) and of Clinger (1981) were entirely semantic. So, our work seemsto be
the �rst to deal with the formal designof open recon�gurable systemsbasedon
this model. The meansto support actor speci�cation and veri�cation appear to
be the main contribution of this chapter.

Opennessand recon�gurabilit y have beenaddressedin the recent litera-
ture, receiving special attention from those who advocate an object-basedap-
proach to software design. Fiadeiro and Maibaum (1992) and also Sernadas
et al. (1995)captureopennessin a static object con�guration setting considering
that each speci�ed event may occur in parallel to other events of the environ-
ment. This semantics for action symbols was adopted here as well. America
and de Boer (1996) develop an extensive study of dynamically recon�gurable
synchronousobject communities and provide methods for reasoningabout their
properties. To support the proof of global properties, in particular, a cooper-
ation test written at the global level has to be proved. Here, on the contrary,
becauseinteraction is always asynchronous, the decisionas to when to accept
a messageis purely local. Abadi and Leino (1997) proposea Hoare logic of
object-oriented programs. Note that Hoare logics are usually endowed with a
set of inferencerulessupporting the veri�cation of generalconclusionsfrom par-
ticular assertionalpremises,which are solely basedon the state of the system
in a single (pair of) instant(s). Here, we have adopted a distinct strategy with
our derived inferencerules,which prioritises insteadthe separationof properties
pertaining to the distinct objects involved in each interaction. This appears
to facilitate the development of proofs taking only into account their possibly
separatedspeci�cations, thus reducing the proof search space.

A number of methods supporting a rely-guarantee discipline has already
appearedin the literature with the aim of supporting the designof opensystems.
Pandya and Joseph(1991) develop in the realm of synchronousprocesscalculi
a theory which appearsto be the closestto our work. Other related work can
be roughly divided in processor model basedformalisms(Jones1983,Cau and
Collete 1996)and logical ones(Pnueli 1985b,Collete 1994,Abadi and Lamport
1995,Jonssonand Tsay 1995). Unfortunately, in the latter recent work, many
distinct levels of abstraction are discussedwithout a clear boundary, due to
the in
uen tial view that implication coincideswith re�nement, asadvocated by
Abadi and Lamport (1995). In this latter category, only two kinds of assertions
representing assumptionsand commitments are considered. All these works
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allow the useof arbitrary safety propertiesbut just a fewconsiderthe occurrence
of livenessproperties as a normal part of commitment assertions.In our work,
both families of properties are treated uniformly as any part of rely-guarantee
assertions. In particular, the use of the connectives unlessand until to relate
past and future relieve us from adopting the more demandingsemantic closures
and history variablesin the application of composition rules. On the other hand,
we have not studied in detail yet how to treat hidden 
exible variables.

In order to provide evidencethat there is no loss of expressivenessby
adopting the asynchronous actor model in the design of open recon�gurable
systems,we exempli�ed how object descriptionscan be transformed into con-
strained speci�cations which forcethe behaviour of each systemto comply with
a synchronous mode of interaction. Agha et al. (1994) also discussa number
of higher-level abstractions de�ned in terms of the actor model, including the
treatment of lessasynchronous interaction modes. In particular, synchronisa-
tion constraints are treated, which permit the receipt of a messageto be delayed
until the object is in a state whereit is possibleto proceedwith the processing
of the message. Note that this is speci�ed here in a way similar to (13.11),
by relating the possibledelivery or consumptionof a messageusing our modal
possibility connective to the local state of the object and the messagecontents.
There is a clearadvantage in usingsuch constraints in relation to a synchronous
mode of interaction, namely that they do not block the sender. The sameap-
plies to the call/return abstraction described in that work. Note that there is
a fundamental distinction between these abstractions and the use of our syn-
chrony transformation: they are to be usedby designersand programmersas
part of actor behaviour descriptionswhereastransformationsof the kind studied
hereconsiderthat such descriptionshave already beenproduced. Further work
related to such transformations is proposedin Chapter 6.

We also made a digressionconcerningthe use of dynamic subclassesas
an object-oriented approach to support extensibility. We showed that, because
the actor model can capture state and change,dynamic subclassescan also be
designedin terms of this model by a speci�c designdiscipline which leads to
more modular speci�cations. Becausechangeis normally causallyconnectedto
the occurrenceof interaction here,which in turn usually eventually happen due
to the format of the axioms necessaryin each actor speci�cation, we obtain a
designnotion which compliesnot only with the de�nition of dynamic subclass
but alsowith our de�nition of extensibility in Chapter 1. Our work di�ers in a
fewpoints from that described by Wieringa et al. (1995). First of all, interaction
is not discussedtherein. Also, becauseour underlying model supports unique
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object identi�cation, this doesnot needto be treated in the study of dynamic
subclasses.Finally, we do not requirethat classmigration be irre
exiv e: herean
object may migrate to the sameclassit currently belongsto. In this way, class
migration coincideswith the intended meaningof the actor primitiv e become.
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Chapter 4

Re
ection and the Design of
Meta-Lev el Arc hitectures

The open recon�gurable system abstraction is useful to support the designof
softwaresystemsin the small. Recently, however, the trend hasbeento pay more
and more attention to the overall organisation of the components of each sys-
tem and their interrelationships, classifyingthe distinct ways in which they are
designed,organisedand evolve over time with the aim of providing automated
development tools and supporting reuse. The branch of Software Engineering
concernedwith theseissuesis called software architecture (Garlan 1995).

Conventional architectural styles have beenidenti�ed in existing systems
and have guidednewdesigns.Examplesare the client-server and pipe-and-�lter
styles. The most non-conventional style is perhapsthat of meta-level architec-
tures. A meta-levelarchitecture is one wherein there is a clear separation of
components into base-levelobjects, which are devoted to solving a problem in
the application domain, and meta-levelobjects, which dealwith the base-level of
the architecture itself | its con�guration, operational behaviour and the way it
is usedto accomplishthe main purposeof the system. This separationmay be
iterated to identify many (possiblyunrelated) meta-levels in the samearchitec-
ture. Meta-level objects areusefulin applicationssuch asmemorymanagement,
debugging,fault detection and recovery. Particularly in the context of concur-
rent and distributed systems,this separationis important in such activities as
scheduling, load balancing and task migration. In this way, meta-level objects
do not directly deal with the problem domain, but help in establishinga better
organisationof the system,as observed by Simhi et al. (1996).

When the meta relation is recursively iterated, architectures complying
with a distinguishedstyle are obtained. Re
ective architectures realisecompu-
tational re
ection. Maes (1987) characterisescomputational re
ection as the
activit y performedby each component when doing computation about its self,
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possibly a�ecting its own behaviour. In a re
ectiv e system,the meta-levels are
represented by an interpreter and there is a causal connection betweensystem
description and its behaviour: whenever the description changes,the behaviour
changesasa result and each modi�cation in behaviour is precededby a descrip-
tion change.Programmingand speci�cation languagesaresaid to be re
ective if
re
ection is explicitly supported by speci�c languageconstructs. In the former
case,such languagesare said to have an underlying re
ectiv e architecture.

Many authors have studied the designof meta-level and re
ectiv e archi-
tectures. Simhi et al. (1996) proposea technique basedon state transition dia-
gramsto enhancethe designof re
ectiv e objects. Taharaet al. (1996) introduce
an algebraicsemantics for re
ectiv e objects basedon an extensionof rewriting
logic (Meseguer1992). Saekiet al. (1993) proposea re
ectiv e extensionof the
speci�cation languageLOTOS. Clavel and Meseguer(1996) study re
ection in
a general logical setting and show that the executablespeci�cation language
Maude, which is basedon rewriting logic, ful�ls the conditions to be re
ectiv e.

It is important to stressthat the research mentioned above is mostly con-
cernedwith the designof meta-level and re
ectiv e architectures. In logic, meta-
theoretic facilities have alsobeenstudied without any required connectionwith
a notion of computation. Such theoretic study involves axiomatising a given
provabilit y relation and this allows oneto usethe logical languageto talk about
the logical systemitself. This is why such facilities are said to be intr ospective.
Attardi and Simi (1991),Basinand Matthews (1996)pursuethis line of research.

The confusionbetweenthe presenceof meta-level or re
ectiv e facilities at
the architectural level and in the logical systemusedfor designis just oneof the
many points that has remainedrather unclear concerningthesenotions. Most
authors do not distinguish meta-level from re
ectiv e architectures as Venkata-
subramanianand Talcott (1993)do. Moreover, it is not clear in many situations
if theseare required or even desirablenotions. On the other hand, both notions
are clearly helpful in ensuring extensibility due to the possibility of providing
extendedbase-level functionality asa result of meta-level behaviour.

In this chapter, we �rst show that the assumptionof meta-level architec-
tures is reasonablein the designof open recon�gurable systemsas formalisedin
the previouschapter. We baseour rationale on the impossibility of solving the
consensusproblem in asynchronous systemsthat admit crash failures (Fischer
et al. 1985). Next, we de�ne a discipline that permits the designof meta-level
architectures. Finally, we argue that the assumptionof re
ectiv e architectures
is not compatiblewith systematicsoftware development dueto the impossibility
of relying on constantly changing speci�cations for veri�cation and re�nement.
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4.1 Meta-lev el Considered Necessary: The Con-
sensus Problem

In this section,we show that the assumptionof meta-level architectures is rea-
sonablein the designof openrecon�gurablesystemsasformalisedin the previous
chapter. To reach this conclusion,we usethe consensusproblem, which involves
a set of processeswhich may individually fail but have to agreeon the same
binary value otherwise. This is just an abstraction of many practical problems
such as distributed transaction commitment. Fischer et al. (1985) show that it
is impossibleto �nd an implementation that solvesthis problem in a completely
asynchronoussetting admitting at least oneunreliable process.

Many distinct types of failure are studied in the designof fault-tolerant
systems. Messageloss is the most typical examplein a messagepassingmode
of interaction. The consensusproblem is impossiblein the presenceof crash-
failures(also known as fail-stop failures) or more severe onessuch asByzantine
failures, which may be followed by an arbitrary object behaviour, even in an
ideal reliable network that guarantees messagedelivery. This last property is
ensuredby our axiomatisation of the actor model. On the other hand, due to
our decisionto makeweaker assumptionsthan thoseof perfectmessagebu�ering
in our axiomatisation, here it is possibleto represent crash-failuresas required
in any attempt to deal with agreement problems.

The many processesof a system involved in reaching distributed agree-
ment are assumedto hold an initial boolean value and to interact solely by
asynchronous messagepassing. For any such an agreement system to be cor-
rect, the following properties are required to hold:

Termination: Every non-faulty processeventually decidessomevalue;

Agreemen t: Each pair of non-faulty processesdecidesthe samevalue;

In tegrit y: Every processdecidesat most once;

Validit y: If a processdecidesa value, it was the initial value of someprocess.

Note that integrity is local whereasthe other onesare global properties of the
system. Weaker formulations of the consensusproblem alsoyield an impossibil-
it y result, but for our illustrativ e purposesthe formulation above su�ces.

Due to the general nature of the problem, it appears to be more prof-
itable to attempt a general treatment here. In order to represent agreement
processes,we usepresentation schemas,which di�er from theory presentations
just becausethe signature symbols are left partially unspeci�ed and the stated
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Speci�cation UnrelPr oc
data t yp es 
 [ f addr; bool (T ; F : bool)g
attributes A [ f f ail ed : boolg
actions � lb : lo cal birth ;

� eb : extrn birth ;
� c [ f failg : lo cal computation ;
� l � lb : lo cal message;
� e� eb : extrn message

axioms x : bool; n : addr
fail ! f ail ed = F (18.1)
fail ! X (f ail ed = T ) (18.2)
V

c2 � c

9~vc � c( ~vc) ^ f ail ed = x ! X (f ail ed = x) (18.3)
V

b2 � eb

9n; ~vb � new (b;n; ~vb) ! f ail ed = F (18.4)
V

b2 � l b

9~vb � b( ~vb) ! f ail ed = F (18.5)
V

c2 � c

9~vc � c( ~vc) ! f ail ed = F (18.6)
V

c2 � l � l b

9~vc � deliv (c; ~vc) _ c( ~vc) ! f ail ed = F (18.7)

V

c2 � e� eb

9n; ~vc � send c;n; ~vc (! )f ail ed = F (18.8)

End

Figure 4.1: Schematic speci�cation of unreliable processes.

sentencesmay be schemasand not just axioms as usual. Whenever we refer
to one such schematic presentation, we are in fact making referenceto all the
theory presentations which have a signatureand a set of axiomscomplying with
the speci�ed syntactic pattern. In addition, each morphism connectinga source
to a target schematicpresentation is assumedto represent a family of morphisms
relating the respective theory presentations which also respect the translation
of the sourceaxiom schemas.

Our schematic presentation of unreliable processesappearsin Figure 4.1.
Each processis endowed with distinguished local computation and booleanat-
tribute symbols, fail and f ail ed respectively, which represent the occurrenceof
a failure and the unreliable state reached as a result of this occurrence.Axiom
(18.1) says that failures can occur only in reliable states. Moreover, an unreli-
able state is reached asa result of such an occurrenceand only then, according
to (18.2) and (18.3). Schema(18.4) speci�es that only initially reliable processes
are admissible. The other axiom schemasin the presentation determine that it
is impossiblefor the processto witness the occurrenceof local events after the
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Speci�cation UnrelA gmPr oc = �(UnrelPr oc ) +
attributes initial ; decision;decided: bool; known : addrn (n 2 N )
actions decide(bool) : lo cal computation
axioms x; y : bool;~k : addrn

9x � decide(x) ! decided= F (19.1)
decide(x) ! X (decision = x ^ decided= T ) (19.2)
V

c2 � c

9~vc � c( ~vc) ^ decision = x ^ decided= y ! X (decision = x ^ decided= y) (19.3)

V

c2 � c

9~vc � c( ~vc) ^ initial = x ^ known = ~k ! X (initial = x ^ known = ~k) (19.4)

V

b2 � l b

9~k; ~vb � b(~k; ~vb) ! decided= F ^ initial = decision ^ known = ~k (19.5)

End

Figure 4.2: Schematic speci�cation of unreliable agreement processes.

occurrenceof a failure. This meansthat we are dealing with crashfailures.

The processesthat attempt to reach distributed agreement in any system
areconsideredto beunreliable in the precisesensespeci�ed above. Werepresent
this fact through a morphism � connectingthe schematic speci�cation of unreli-
able processesUnrelPr oc to that of agreement processesUnrelA gmPr oc .
Apart from the symbols dealingwith the occurrenceof failures, the languageof
agreement processesis alsorequired to contain symbols to treat the occurrence
of a decision,decide, the value initially proposedby the process,initial , and
the possibly agreedbooleanvalue, decision. As in the caseof failures, we also
adopt a boolean attribute decidedto denote whether or not a decisionaction
has already happened. Furthermore, a list of processeswhich is known to be
attempting to reach agreement is kept asthe value of the attribute known. The
(schematic) axioms in Figure 4.2 are similar to thosespecifying the occurrence
of failures. We needto stressat this point that many other presentations would
also be suitable to deal with the consensusproblem | what is important in
this situation is the set of properties enjoyed by the speci�ed objects | but we
prefer the presentation above to facilitate our exposition.

Now we can formalise the dynamic nature of the problem. Upon proper
initialisation, the four propertieslisted above arerequiredto hold. The safepart
of theseproperties may be formally stated as follows:

I nit (~k;~n):
W

b2 � l b

8i � 9n; ~vb � n:new(b;ki ;~k; ~vb) ^
V

c2 � e� eb

X G(8l � 9i; ~vc � l :send c;ki ; ~vc (! )9j � l = nj );

(Initialisation)
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Term(~k): 8i � ki :f ail ed= F ! ki :decided= T ; (Termination)

Agm(~k): 9v � 8i � ki :f ail ed= F ! ki :decision = v; (Agreement)

I nteg(~k): 8i � 9v � ki :decide(v) ! X G(/9v � ki :decide(v)); (Integrity)

Val(~k): 8i; v � ki :decision = v ! 9j � kj :initial = v. (Validit y)

Usingthe formulasaboveand the logicalpropertiesof actors,the consensus
problem can be formulated asthe validit y of the following livenessproperty, for
each ~k such that len~k � 2 and each ~n :

I nit (~k;~n) ! F(Term(~k) ^ Agm(~k) ^ I nteg(~k) ^ Val(~k)) (4.1.1)

Note that this sentence may be obtained as a result of reasoningaccordingto
the rely-guarantee discipline described in the previouschapter.

The solution of the problem above clearly depends on the particular set
of properties speci�ed as part of each presentation. Fischer et al. (1985) gives
a semantic proof that there is no solution if the mode of interaction is purely
asynchronous. However, we cannotguarantee that this is the caseusingonly the
previousschematic presentations, sinceeven completelysynchronouscommuni-
cation can be speci�ed in terms of asynchronousmessagepassing,as illustrated
in the precedingchapter. On the other hand, a totally synchronous solution
basedon our schematic presentations obtained via an application of our syn-
chrony transformation is alsoimpossibleasa target processfailure would imply
in a sourceprocessdeadlock in any communication. Many partial synchrony
solutions, which depend on �ne grain decisionsconcerningthe adopted mode
of interaction, are studied by Dolev et al. (1987). Despite thesedeterministic
solutions, if all the processesin the systemmay fail and there is no synchrony
involved, the problem is impossible. In these circumstances,a solution based
solely on the actor model cannot be proposed.

One elegant way of hiding the �ne grain decisionsconcerningthe mode of
interaction betweenagreement processesis the assumptionof failure detectorsas
proposedby Chandraand Toueg(1996). Each processis assumedto have access
to a local failure detection object. Such objects keepa list of processesthat are
suspectedto have failed, which is dynamically updated by inclusion or removal.
Failure detectorscanmake mistakesbut are requiredto obey somecompleteness
and accuracy properties demanding,for instance,that eventually every process
that crashesis always suspectedby somereliable processand that somereliable
processis eventually never suspectedby any of the processesthat do not crash.
A number of failure detectorscan be proposedobeying theseproperties.
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Note that failure detection objects are not assumedto crash. This distinc-
tion betweenobjects that may and may not crash,togetherwith the assumption
that failures are to be detectedamongst the set of given processes,establishes
a separationof the involved systemcomponents into base-level and meta-level
objects. Note that failure detectorsareabout the systemitself. In this way, they
arenot to have any connectionwith the problem domain, naturally belongingto
a meta-level of the system. Becausesomeabstraction similar to failure detectors
is required in order to hide the underlying mode of interaction and this can be
captured in terms of meta-level architectures, it seemsthat it is reasonableto
considerthe latter notion as necessaryin the designof extensiblesystems. In
the next section,we proposea novel way of designingmeta-level architectures.

4.2 The Design of Meta-Lev el Arc hitectures

The central point in designingmeta-level architectures is to draw an explicit
boundary between base-level and meta-level functionality. This separation of
what concernsthe problem domain and the system itself is normally accom-
plished stating a set of non-interference properties. Saeki et al. (1993), for
instance,requiresthat baseand meta-level objects do not communicate explic-
itly . Venkatasubramanianand Talcott (1993) require that meta-level objects
communicate with each other via messagepassingbut manipulate baseobjects
asdata structures. This kind of organisation is illustrated in Figure 4.3.

Each object in the base-level is associatedto somemeta-level object wherein
base-level state and events are represented. This gives the meta-level accessto
the featuresof the base-level, which in our caseincludesthe hidden part of the
state related to messagebu�ering. The hidden state of the respective objects
is represented as the dark parts of Figure 4.3. Meta and base level are also
required to be aware of the mail addressesof each other and this enablestheir
interaction.

We formalisethe previous intuition about the representation of base-level
information in the meta-level through the following de�nition:

De�nition 4.2.1 (Base-lev el represen tation) Given actor speci�cations � i

= (� i , 	 i ), i � i � 2, � 2 is said to representa meta-levelof � 1 if there is a
speci�cation morphism � 1

�! � 2 such that:

1. � maps attribute and actions of � 1 into � 2, i.e., associates to pairs of
distinct symbols in each of thesefamiliesof � 1 pairsof distinct � 2 symbols;

2. there are 
exible terms meta� 2 Term(� 1)addr and base� 2 Term(� 2)addr

such that � (meta� ) 6= base� ;
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Figure 4.3: Relationship betweenbaseand meta-level objects.

3. � 2 ` � (p) i� � 1 ` p for each p 2 � 1 [ Ax � 1 .

Given the morphism � , we say that � representsthe base-level � 1 in � 2.

The requirement that representation morphisms be injective on attribute and
action symbols in (1) captures the intuition that the architecture meta-level
keepsa full representation of all the behavioural characteristicsof the base-level.
In order to allow unlimited accessto base-level information in the meta-level, as
previously described, we also have to lift the restriction that somesymbols in
the base-level representation arehidden. Condition (2) is to guarantee that base
and meta-level objects can be madeaware of the mail addressof each other and
the representation processdoesnot precludetheseobjects from being distinct,
having di�erent mail addresses.The last condition (3) says that the properties
of each object are the samewhen observed from either level of the architecture.

Base-level representation just ensuresthat it is possiblefor baseand meta
levels to co-exist in the samesystem. To guarantee that this certainly happens,
we also need to make someassumptionson the way objects ful�lling each of
theserolesare related:
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De�nition 4.2.2 (Meta-relation) Given actors denoted by f x; yg � Vaddr

and speci�cations � i = (� i , � i ), 1 � i � 2, such that � 2 represents the
meta-level of � 1, y in the � 2-community is said to be a meta-levelobject of
the base-levelobject x in the � 1-community if for some� representing � 1 in � 2:

1. x 6= y;

2.
V

f 2A�A i

8k; ~vf � x:f ( ~vf ) = k $ y:� (f )( ~vf ) = k and
V

c2 � � � l b[ in b

8~vc � x:c(~vc) $ y:� (c)( ~vc);

3. x:� (meta� ):base� = x and y:base� :� (meta� ) = y.

The �rst condition prevents that the samebase-level object be related to itself as
part of the meta-level. The secondonesays that meta-level objects simulate the
behaviour of their base-level counterparts. This is quite a strong requirement.
For instance,it implies that identical messagesarealways dispatchedto baseand
meta-level objects. There are ways of making this requirement more reasonable
by increasing the amount of sharing allowed by the formalism | it may be
possible to consider that the same message,with the same identi�cation, is
dispatched to both baseand meta level | but we prefer to leave this treatment
unspeci�ed in order to dealwith the problem in an abstract manner. Due to our
mutual exclusionassumptions,the previousrequirement alsoimplies that meta-
level objectswill present someindependent behaviour only whentheir respective
base-level is inactive. Finally, the third condition says that baseand meta-level
objects know the mail addressesof each other. From the de�nitions above, we
seethat, to designmeta-level architectures, we have to split the designin two
parts asusual: a pair of speci�cations relatedby meta-representation is proposed
and two existing objects are assumedto be always meta-related.

Note that, given a representation morphism, the assumptionthat two ob-
jects are meta-relatedcanbe stated usinga �nite conjunction of formulas. That
the two objects exist and belong to distinct communities is simply ensuredby
relating the occurrenceof their birth actions. The conditions (1-3) above are
all stated in terms of single formulas. Therefore, it is feasibleto write such a
�nitary conjunction as part of a rely-guarantee assertion.

Also note that our de�nitions are quite permissive concerning multiple
connectionsbetweenbaseand meta levels. For instance, it is possiblethat the
samebase-level object be directly related to several distinct meta-level objects.
What is necessaryto determine this situation, apart from the respective as-
sumptions, is a set of representation morphisms,each requiring the existenceof
a distinct meta attribute. On the other hand, it is possiblefor the samemeta-
level object to represent several base-level objects. This happens becausethe
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attribute symbol baseis not required to be in the imageof any representation
morphism. In this way, the samemeta-level speci�cation can determine many
such attributes which are related to the respective baselevels through their rep-
resentation morphisms and the corresponding assumptions. Furthermore, by
chaining thesestatic and dynamic relationships,a �nite hierarchy of meta-levels
can be speci�ed as part of the samesystem.

Let us return to the consensusproblem. We sketch in what follows a
solution basedon the rigorousdiscipline proposedabove. Our solution requires
that the meta-level of each object, that is the respective failure detector, knows
the meta-level addressof all the other processesattempting to reach agreement.
This is achieved by requiring that each of the n agreement processesbroadcasts
the mail addressof its meta-level object just after the occurrenceof the respective
birth action. Note that someof thesemessagesmay never be receivedsincesome
failuresmay happen �rst. Wealsorequirethat the interaction betweena process
and its local failure detectorbesynchronousand make the assumptionthat meta
and base-level objects communicate only amongthemselves.

Each failure detectoroperatesin asynchronousrounds,whosestepsarede-
termined by the consumptionof self addressedmessages.Each failure detector
automatically knows if its processfailed or not, due to our construction giving
base-level accessto thesemeta-level objects, and is always eventually enabled
for delivery of any messagepertaining only to the meta-level. At the end of
each round, the failure detector updatesits list of suspectswith the information
possibly received by other detectorsand broadcaststo all the other failure de-
tectors the list of processesknown to have crashed.In this way, the information
provided by each of theseobjects is always correct and accurate.

The agreement processesthemselves also operate basedon asynchronous
rounds and keeplists of valuesthat are known to be initially proposedby each
process. In the beginning, this list contains only the value proposedby the
local process. After n � 1 rounds, wherein proposedvaluesare broadcastand
propositions from all processesthat are not suspectedare awaited, each process
that has not crashedwill be aware of a list of initially proposedvalues. During
each round, the list of suspected processesis dynamically updated to re
ect
information provided by the local failure detector. In a secondstage, the list
kept by each processis broadcastand every received list is usedtogether with
the local list to computea leastcommondenominatorthat will replacethe latter
list. Again, the list of suspectsis updated while new lists of valuesare expected.
After this stage, there will be agreement on the list of proposedvaluesamong
the processesthat have not crashed. Finally, each reliable processdecidesthe
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�rst valueof this list. The systemclearly reachesconsensusafter this procedure.

The solution above is essentially that proposedby Chandra and Toueg
(1996),particularised with our speci�cation of failure detectorsderived from the
assumedmeta-level architecture. Therein, a proof can be found that property
(4.1.1) is valid consideringtheseassumptions.

4.3 Computational Re
ection

The assumptionof meta-level architectures is extremely powerful. Even with-
out making referenceto the hidden symbols in the representation of base-level
objects, to solve the consensusproblem in the previoussectionwe could design
perfect failure detectors,in the sensethat they are always correct, accurateand
never make mistakes. Therefore,it appearsto be natural to askourselvesif the
assumptionof re
ectiv e architectures would be even more desirable.

This question may be given two answers. Consideringthat we are inter-
estedin extensiblesystems,re
ectiv e architectures are certainly desirablesince
they permit behavioural changesof system features at any architecture level.
For instance,in a re
ectiv e text editor like Emacs(Stallman 1981),it is possible
to extend the systemproviding not only a new way of cutting and pasting text
basedon menus, apart from keystroke commands,but alsonew ways of making
this extension,through forms or changinga con�guration �le, to mention a few
possibilities,and this chain of extensionscould be in�nitely iterated.

On the other hand, if we considerour interest in systematic software de-
velopment, it doesnot make senseto assumere
ectiv e architectures. It would
be impossibleto prove any non-trivial safety property concerningthe previously
mentioned re
ectiv e text editor, for instancethat the editing sessionis not ter-
minated unlessthe text is saved �rst, becausethis and other properties would
depend on the extensionsperformed at run time. Such extensionswould have
to be re
ected in the speci�cation of the system itself. It would also be im-
possibleto de�ne a non-trivial satisfaction relation betweensuch speci�cations
and programs becausethe programming languagewould have to be re
ectiv e
as well. Therefore, the assumptionof re
ection is inappropriate in systematic
software development. This has already beenidenti�ed by Agha et al. (1993),
for instance. We needto clarify, however, that designinga re
ectiv e architecture
is di�erent from assumingthe existenceof one such an architecture in the de-
sign of a distinct system: the designof a re
ectiv e architecture doesnot needto
assumethe existenceof onesuch an architecture. In the realm of programming
languagedesign,this hasalready beenshown by Wand and Friedman (1988).
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Part of the argument above can also be explained in terms of our formal
de�nitions in the previoussection. Re
ective architectures are thosewherethe
chain of meta-levels is not �nite. In this way, to give formal treatment to the
assumptionof such an architecture, we would have to provide an in�nite number
of morphismsconnectingeach pair of architecture levelsand write an in�nitary
conjunction of assumptionsof meta-related objects. This is clearly impossible
using the �nitary �rst-order logical systemsstudied in this thesis,but may not
represent a problem if an in�nitary logic basedon L ! 1 ! , say, is adopted.

4.4 Summary and Related Work

In this chapter, we have arguedthat the assumptionof meta-level architectures
shouldbe considerednecessaryin the designof extensiblesystems.Through an
example,we showed that meta-level architectures provide a direct and elegant
solution to a speci�c problem which otherwisedemands�ne grain decisionscon-
cerningthe modeof interaction betweenobjects and is in somecasesimpossible.
We proposeda designdiscipline that treats this assumption. We also argued
that the assumptionof re
ectiv e architectures is not compatiblewith the notion
of systematicsoftware development.

Maes(1987) was the �rst to proposea systematicstudy of computational
re
ection and to develop a re
ectiv e object-basedprogramminglanguage.Agha
(1997)recognisedthe needof moreexpressive formalismsto dealwith meta-level
architectures. Venkatasubramanianand Talcott (1993) establisheda clear dis-
tinction betweenmeta-level and re
ectiv e architectures,which we have followed,
and developed semantic methods for reasoningabout such architectures. The
latter work is basedon the actor model, as is our case.

Saekiet al. (1993)extendedthe speci�cation languageLOTOS with re
ec-
tive facilities. In particular, the restriction that base-level representation must
focus just on behavioural aspectsof the systemwas re
ected here in De�nition
4.2.1 through the requirement that attribute and action symbols be fully rep-
resented. Simhi et al. (1996) proposedthe useof state transition diagrams to
enhancethe designof re
ectiv e objects. Both works contrast with our view that
re
ection is not compatible with systematicsoftware development and software
designin particular.

It is alsointeresting to mention that all the work on distributed consensus
has beendeveloped in a semantic way (Fischer et al. 1985,Dolev et al. 1987,
Chandra and Toueg1996). Our formalism and discipline appear to provide a
suitable proof-theoretic framework for dealing with this and related problems.



Chapter 5

Case Study: Lo cation
Managemen t for Mobilit y

We are currently facing a radical changein the way usersinteract with software
systemsand in the underlying distributed software architectures. Thanks to
the advent of technologieslike cellular phones,personaldigital assistants and
active badges,usersare no longer required to go to speci�c accesspoints to
take advantage of somelocally provided functionality. Such deviceshave be-
comeincreasinglymore personaland can be carried by their owners. In turn,
the respective software systemsmay now be used at any time and place, and
can provide location dependent functionality such as ubiquitous messagedeliv-
ery, transportable usersessionsand others (Harter and Hopper 1994). Software
components which implement thesefeaturesare identi�ed by end usersas ex-
tending the functionality provided at their current location. What is essentially
novel in this completely new kind of operational environment is the very pres-
enceof mobility. The way to support the new requirements related to mobilit y
is to managelocation information.

The needto managelocation information and mobilit y brings with it new
problemsto be addressedin the designof distributed systems. The autonomy
and heterogeneity presented by mobile objects make it not only di�cult but
virtually impossibleto account for many interesting features required in real
implementations as part of any design. Moreover, to ensure that these sys-
tems are open, characteristics that depend on the current technology need to
be abstracted away. In this context, speci�cations have to be supported by a
formalism which is expressively rich enough to represent the remaining prop-
erties. VDM (Jones 1990) and Z (Spivey 1989), for instance, do not address
at all the inherent concurrencyof mobile systems. In someother cases,con-
currency is actually treated but the development processis organisedin terms
of notions like processes(Milner 1983) or programs (Chandy and Misra 1988,

157



158 Chapter 5. CaseStudy: Location Management for Mobilit y

Wilcox and Roman1996),which certainly provide important insights on how an
implementation shouldwork but poorly support understandingand representing
the problem domain in an organisedmanner. The useof object-basednotions
like attributes, actions and encapsulationas studied in the previous chapters
seemsto bridge this gap, but even then expressibility concernsarise since the
basicnotion of mobilit y has to be captured.

We have chosenas a casestudy in this chapter the designof a particular
location management architecture for networks of mobile usersand devices,as
originally sketched in (Duarte 1997a),to illustrate in a more realistic situation
the application of our formalism and designdiscipline. For simplicity, we ignore
the important issuesof dependability, authenticit y and security (Spreitzer and
Theimer 1994), concentrating just in the management of location information.
We alsoabstract away many details that are essential to ensurereasonableper-
formance (Lam et al. 1996). In the next section, we informally describe the
requirements of location management applications. We then devote two sec-
tions to their design,namely their speci�cation and veri�cation. We conclude
this chapter providing a comparisonwith related work.

5.1 Lo cation Managemen t: Requiremen ts

A central problem in designingand implementing software systemsfor networks
of mobile usersand devicesis how to managedistributed object locations. An
extensive description of the problem can be found in the literature (cf. Harter
and Hopper 1994, Leonhardt and Magee1996, Spreitzer and Theimer 1994).
In this section,we provide an informal list of requirements strictly imposedby
mobilit y. In the next section,we discusssomedesigndecisionsbasedon this list
and proposea formal speci�cation for the corresponding mobile architecture.

We canclassifythe requirements for managingdistributed object locations
into three families, the �rst concerningthe nature of location information and
located objects, the secondabout the processof acquiring location information
and the third on how to deal with it. In what follows, we provide a partial list
of functional requirements:

1. Location information must be dynamic, in the sensethat, at each time, it
may be a distinct instanceof a class1 of objects;

2. Location information must be mutable, in the sensethat, at each time, it
may be an instanceof a distinct classof objects;

1Here we consider the word classin a loosesense,just as a set of objects.
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3. Located objects may be usersor devices, at least;

4. Location information acquisition must be unintrusive, which meansthat
the acquisition processcannot intrude user behaviour nor require user
intervention;

5. Location information acquisition must o�er support to multiple location
observations, which meansthat simultaneousobservations producing dis-
tinct location information for the sameobject may occur;

6. Location information management must support indeterminacy, which
meansthat location information for someobjects may not be available
at someinstant;

7. Location information management must o�er support to object naming,
which is the assignment of meaninglessunique namesto located objects.

The �rst two items shouldnot be confused.While mobile object locations
clearly may needto changeas time passes,meaningthat they are dynamic, it
is not so obvious that they should also be mutable. This is becausea location
servicemay provide information with distinct accuraciesor multiple servicesmay
beused,asobservedby Leonhardt andMagee(1996). The requirement of unique
object naming may be controversial, but appears to be the minimal condition
to support properties not treated heresuch as authenticit y and security.

5.2 Lo cation Managemen t in a Formal Setting

Beforeintroducingde�nitions directly relatedto location management, wepresent
in Figure 5.1 the speci�cation of region tree nodes,particular instancesof the
spatial hierarchical data structures proposedby Samet (1984). These will be
used in our design later on. At the top of the speci�cation, we can seesort
symbols denoting not only standard actor data typesbut alsothe four compass
points (direc). Constant and operation symbols appear in the samestatement.
Each quadratic planar region is represented by a terminal node (node), which
is createdundivided (bot = T ), or by a root node (root). Terminal nodesmay
receive requeststo divide themselvesin sub-regions( split) organisedin reg ac-
cording to the directions of the compasspoints. Nodes need to be aware of
their own mail address(me) and the nameof a parent node (pr), when it exists.
Eventually, continuations may be created (ct) to expect the answer of queries
of region inclusion (in). De�ned in this way, theseare quaternary treeswherein
nodesmay be dynamically associated to more re�ned partitions of the plane.
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Actor RegionTreeNode
data typ es addr; bool; int; direc (T ; F : bool; 0; 1; 3 : int; + : int � int ! int; N; S; E; W : direc)
attributes me;pr : addr; r eg : direc! addr; up;bot : bool; an : int
actions ct(addr2) : lo cal birth ;

root(addr5); node(addr2) : lo cal + extrn birth ;
go; inc; updt (addr4) : lo cal computation ;
ack(addr4) : extrn message;
split (addr); in(addr2); rpl (addr2; bool) : lo cal + extrn message

axioms n : addr4; k; p;q; r; s; t; u; x; y; z : addr; d : direc; v : int; b : bool
root(k; ~n) ! me = k ^ up = F ^ bot = F ^ reg = ~n ^ an = 0 (20.1)
node(k; p) _ ct(k; p) ! me = k ^ pr = p ^ up = F ^ bot = T ^ reg[d] = k ^ an = 0 (20.2)
root(k; ~n) _ node(k; p) _ ct(k; p) ! X (go) (20.3)
go^ reg = ~n ^ an = v ! X (reg = ~n ^ an = v ^ up = T ) (20.4)
updt (~n) ^ up = b^ an = v ! X (up = b^ an = v ^ bot = F ^ reg = ~n) (20.5)
inc ^ up = b^ reg = ~q ^ an = v ! X (up = b^ reg = ~q ^ an = v + 1) (20.6)
(go_ updt (~n) _ inc) ^ me = p ^ pr = q ! X (me = p ^ pr = q) (20.7)
split (k) ^ me = p ! X (9~q � updt (~q) ^ new (node; qi ; qi ; p) ^ send ack; k; ~q ()) (20.8)
(in(k; p) ^ r = k _ rpl (r; s; T ) ^ pr = p) ^ me = k ! X (send rpl ; p; r; k; T ()) (20.9)
in(k; p)^ me = q 6= k^ bot = F^ reg = ~r ! X (9! s � new (ct; s; q; p)^ send in; r i ; k; s ()) (20.10)
in(k; p) ^ me = q 6= k ^ bot = T ! X (send rpl ; p;k; q; F ()) (20.11)
rpl (k; p;F) ^ pr = r ^ me = q ! X (an = 3 ^ send rpl ; r; k; q; F (_)an 6= 3 ^ inc) (20.12)
9~n; ~p � new (node; n i ; pi ; q) _ updt (~n) _ send ack; r; ~n ( )split (r ) ^ me = q (20.13)
inc  9k; p � rpl (k; p;F) ^ an 6= 3 (20.14)
send rpl ; k; p;q; T ( ) (in(q; k) ^ p = q _ 9s � rpl (p;s; T ) ^ pr = k) ^ me = q (20.15)
send rpl ; k; p;q; F ()  (in(p;k)^ p6= q^ bot= T _ 9s�rpl (p;s; F)^ pr = k^ an= 3)^ me= q

(20.16)
9k � new (ct; k; q; r ) _ send in; pi ; s; k ( ) in(s; r ) ^ me = q 6= s ^ bot = F ^ reg = ~p (20.17)
up = T ! FE (deliv (split ; p)) ^ FE (deliv (in; q; r )) ^ FE (deliv (rpl ; s; t; b)) (20.18)
up = T ! FE (split (t)) ^ FE (in(u; x)) ^ FE (rpl (y; z; b)) (20.19)

End

Figure 5.1: Speci�cation of region trees.

Basedon the requirements list above, we make our �rst designdecision
following Harter and Hopper (1994) by using referencesto objects denoting
geographicregionsinstead of dealingwith location information directly. In this
way, each located object acquiresa new attribute (loc), which is to contain the
mail addressof an actor representing a region in a location space.Using region
treesas in Figure 5.1 for this purpose,we treat both the dynamic and mutable
characterof location information with this decision:asthe valueof an attribute,
such information can always be changed;as a reference,it does not constrain
the shape and sizeof location observations. We make, however, the simplifying
assumption that geographicregions are divided into disjoint squares,due to
the structure of such trees. In a real global location system, it may be more
appropriate to adopt a location spacedivided accordingto a sphericalcoordinate
systemwith origin in the earth centre. Uniqueobject namingis treated similarly,
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Actor Sensor
data typ es addr; bool; int (T ; F : bool; 0; 1; MAX : int; + : int � int ! int)
attributes me;srv; obj; id; loc : addr; up : bool; time : int
actions sens(addr5) : lo cal + extrn birth ;

go; reloc(addr); set(int); obs : lo cal computation ;
tick : lo cal + extrn message;
detect(addr2); unreach(addr2) : extrn message

axioms n; p;q; r : addr; v : int; b : bool
sens(n; p;q; r; s) ! me = n ^ srv = p ^ obj = q ^ id = r ^ loc= s ^ time = 0 ^ up = F (21.1)
sens(n; p;q; r; s) ! X (go^ send tick; n ()) (21.2)
go^ me = n ^ loc= q ^ time = v ! X (me = n ^ loc= q ^ time = v ^ up = T ) (21.3)
reloc(n) ^ me = p ^ time = v ^ up = b ! X (loc= n ^ me = p ^ time = v ^ up = b) (21.4)
set(v) ^ me = n ^ loc= q ^ up = b ! X (time = v ^ me = n ^ loc= q ^ up = b) (21.5)
(go_ reloc(n) _ set(v)) ^ srv = p ^ obj = q ^ id = r ! X (srv = p ^ obj = q ^ id = r ) (21.6)
obs^ me = n ^ srv = p ^ obj = q ^ id = r ! X (me = n ^ srv = p ^ obj = q ^ id = r ) (21.7)
obs^ time = v ^ loc= n ^ up = b ! X (time = v ^ loc= n ^ up = b) (21.8)
obs^ srv = n ^ loc= p ^ (obj = q _ id = q) ! X (set(0) ^ send detect; n; q; p ()) (21.9)
tick ^ time = MAX ^ src = n ^ obj = p ^ loc= q! X (set(0)^ send unreach; n; p;q ())

(21.10)
tick ^ time 6= MAX ^ time = v ! X (set(v + 1)) (21.11)
send detect; n; p;q ( )obs^ srv = n ^ loc= p ^ (obj = q _ id = q) (21.12)
send unreach; n; p;q ( ) tick ^ time = MAX ^ src = n ^ obj = p ^ loc= q (21.13)
set(v)  v = 0 ^ (obs_ tick ^ time = MAX ) _ v = time + 1 ^ tick ^ time 6= MAX (21.14)
up = T ! FE (deliv (tick)) ^ FE (tick) (21.15)

End

Figure 5.2: Speci�cation of sensors.

requiring the existenceof a naming attribute (id) in each namedobject.

In order to treat the requirements related to location information acquisi-
tion and management, we �rst adopt the speci�cation of sensorsin Figure 5.2.
Each sensorshouldbe createdwith knowledgeof a location servicemail address
(srv) and is responsiblefor producing sequential observations (obs) of a named
located object (obj) in a speci�c region (loc). Sensorsare mobile as well and
detect themselvesin the monitored region(21.9). We omit their straightforward
generalisationto deal with the observation of several distinct objects.

Each sensorkeepsan internal clock which evolvesdue to a stream of self-
addressedtick messagesinitiated just after the actor is created. Upon creation,
the resulting occurrenceof a computation go makesthe actor ready for the de-
livery and consumptionof such messages.The clock is reset,set(0), after MAX

cyclesor when the user is observed (21.9 and 21.10). Axiom (21.14) guarantees
that resetsdo not happen in other occasions.Indeterminacy is treated by this
clocking mechanism, which signs to the location service that the user is un-
reachable (unreach) whenever observations do not happen before the deadline
MAX (21.10). A detect messagewith the user location is sent to the service
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Actor MobileA gent
data typ es addr; bool (T ; F : bool)
attributes me; id; loc;to : addr; up; f wg; nul : bool
actions ag(addr3) : lo cal + extrn birth ;

redir(addr) : lo cal computation ;
sub(addr2) : extrn message;
fwd(addr); mv(addr2); cp(addr3) : lo cal + extrn message

axioms n; p;q; r; s; t : addr; b : bool
ag(n; p;q) ! me = n ^ id = p ^ loc= q ^ f wg = F ^ to = n (22.1)
ag(n; p;q) ! X (go) (22.2)
go^ f wg = b^ to = n ! X (up = T ^ f wg = b^ to = n) (22.3)
redir(n) ^ up = b ! X (f wg = T ^ to = n ^ up = b) (22.4)
(go_ redir(n)) ^ me = p ^ id = q ^ loc= r ! X (me = p ^ id = q ^ loc= r ) (22.5)
fwd(n) ! X (redir(n)) (22.6)
mv(n; p) ^ f wg = F ^ me = q ^ id = r ! X (redir(q) ^ send cp; n; p;q; r ()) (22.7)
mv(n; p) ^ f wg = T ^ to = q ! X (send mv; q; n; p ()) (22.8)
cp(n; p;q) ^ loc= r ! X (9! s � new (ag; s; s;q; r )^ send fwd; p;s () ^ send sub; n; s; r ())

(22.9)
redir(n)  fwd(n) _ 9p;q � (mv(p;q) ^ me = n ^ f wg = F) (22.10)
9n; p � new (ag; n; p;q; r ) _ send fwd; s;n (_)send sub; t; n ( )cp(t; s; q) ^ loc= r (22.11)
send mv; n; p;q ( )mv(p;q) ^ to = n ^ f wg = T (22.12)
send cp; n; p;q; r ( )mv(n; p) ^ me = q ^ id = r ^ f wg = F (22.13)
up = T ! FE (deliv (cp; n; p;q)) ^ FE (deliv (mv; r; s)) ^ FE (deliv (fwd; t)) (22.14)
up = T ! FE (cp(n; p;q)) ^ FE (mv(r; s)) ^ FE (fwd(t)) (22.15)

End

Figure 5.3: Simpli�ed speci�cation of mobile agents.

otherwise(21.9). Multiple location observations are obtained by many sensors
concurrently dealing with the samelocated object and by the (fair) mergeof
observation messagesdelivered to the location service.Unintrusivit y is alsoen-
forcedasno causalconnectionbetweenthe production of observations and user
behaviour is imposed.

If we realisethe sensorsof Figure 5.2 as optical devicesconnectedto the
architecture through radio frequencylinks, for instance,software mobilit y arises
only when located object agents are considered.Such agents are meant to fol-
low locatedobjects through the architecture providing location dependent func-
tionalit y such as ubiquitous messagedelivery and transportable user sessions
(Spreitzer and Theimer 1994). Although we leave this additional functionality
unspeci�ed here,we present a speci�cation of mobile agents in Figure 5.3.

We chooseto capture the handover processof mobile objects as localised
agent replication. A mobile agent q may receive a requestfrom p to move to the
location of anotheragent n (q:mv(n; p)), presumablylocatedcloserto the object
q represents. If an agent is currently moving to a new location (f wg = T), such
requestswill bedelayedby self-forwarding until the agent �nishes to move(22.8).
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Figure 5.4: Internal event 
o w of the mobile architecture.

In order to move, the original agent q issuesa requestfor the correctly located
agent n to create a local copy (cp) of q (22.7), supplying in the messageany
required information for the copy (here, in particular, just its logical name id).
After consumingthis kind of replication request, an agent createsthe desired
replica and noti�es both the original agent and the requestingservicethat the
locatedobject representativ e can be substituted, through the messagesfwd and
sub (22.9), respectively.

To ensurecoordination betweensensorsand agents, a location servicemust
guaranteethat the asynchronousmessagesthey exchangearecorrectly addressed
and ordered. This situation is explained by the diagram in Figure 5.4. Once
a located object is detected in a region (at), the location servicehas to �nd
among the registered objects a corresponding mobile agent in the region to
request the creation of a replica of the moving agent therein. The location
spaceis recurrently queried(in) until such an agent is found. Then, the service
requeststhe agent of the relocated object to move to the placeof the correctly
located agent (move). At the end, the serviceis noti�ed (done) so that the old
agent can be discardedand new movement requestscan be processed.

Since the location servicehas to associate located object names(id) to
mobile agents, to keeptrack of their location (loc) and to put agents in contact
to support mobilit y, we considerthat server nodesproviding compartmentalised
bits of this functionality, one for each located object, are organisedin circular
lists, adopting the speci�cation in Figure 5.5. Each server node also records
if there is no location information available for the object (st = NL). This
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Actor Server
data typ es addr; bool; status (T ; F : bool; OK ; NL ; MV : status)
attributes me; id; loc;xt; ag : addr; st : status
actions srv(addr5) : lo cal + extrn birth ;

ch(addr3; bool) : lo cal computation ;
mrq(addr3); ack(addr); ins(addr4); done(addr2) : lo cal + extrn message;
?(addr2); res(addr2; bool); at(addr2); out(addr2) : lo cal + extrn message;
move(addr); in(addr2); @(addr2) : extrn message

axioms n; p;q; r; s; t; u; x : addr; v : status
srv(n; p;q; r; s) ! me = n ^ xt = p ^ id = q ^ loc= r ^ ag = s ^ st = OK (23.1)
ch(n; p;q; v) ! X (xt = n ^ loc= p ^ ag = q ^ st = v) (23.2)
ch(n; p;q; b) ^ me = r ^ id = s ! X (me = r ^ id = s) (23.3)
ins(n; p;q; r )^ xt = s^ loc= t ^ ag= u^ st = v ! X (9x �new (srv;x;x;s;n;p;q)^ ch(x;t;u;v )) (23.4)
ins(n; p;q; r ) ^ xt = s ! X (9t � new (srv; t; t; s; n; p;q) ^ send ack; r; t ()) (23.5)
mrq(n; p;q)^ xt = r ^ loc= s^ ag= t ! X (9! u�new (srv; u; q; r; p;n; t)^ send in; s;p;u ())

(23.6)
?(n; p)^ id = n^ me= q^ loc= r ! X (st = OK ^ send @;p;n;r () _ st 6= OK ^ send ?;q;n;p ())

(23.7)
?(n; p) ^ id 6= n ^ xt = q ! X (send ?; q; n; p ()) (23.8)
at(id; p)^ me= q^ xt = r ^ ag= s^ (loc6= p^ st = OK _ st = NL ) ! X (send mrq; r; s; p;q ())

(23.9)
at(n; p)^ id = n^ loc= q^ ag = s^ (p 6= q^ st = OK _ st = NL ) ! X (ch(r; q; s; MV )) (23.10)
at(n; p) ^ xt = q ^ (id 6= n _ st = MV ) ! X (send at; q; n; p ()) (23.11)
out(n; p) ^ id = n ^ xt = q ^ loc= r ^ ag = s ! X (ch(q; r; s; NL )) (23.12)
out(n; p) ^ id 6= n ^ xt = q ! X (send out; q; n; p ()) (23.13)
res(n; p;T ) ^ loc= s ^ me = q ^ ag = t ! X (send move; s; t; q ()) (23.14)
res(n; p;F) ^ me = r ^ xt = s ^ loc= t ^ id = u ! X (send mrq; s; t; u; r ()) (23.15)
done(n; p) ^ xt = q ! X (ch(q; p;n; F)) (23.16)
...
and usual axioms for readiness,absence of unsolicited responsesand enabledness...

End

Figure 5.5: Speci�cation of location servicenodes.

knowledgeis used to postpone until the object location becomesknown (23.7
and 23.8) the answer to location queries,using the messagesymbols @and ?.

Every messageaddressedto the location service circulates around the
linked list until the node with correct identit y is found. In casean observa-
tion (at) from a sensorarrivescarrying a new object location (23.9), a request
for the rest of the list to �nd someagent placed therein is issuedaiming to
support the movement to that location (mrq). For each registeredlocated ob-
ject, the location spaceis queriedin a two step process:a continuation actor to
processthe query answer will be created(23.8), and this new actor will either
requestthe relocated object agent to move (23.14) or will forward the query to
the next list element (23.15).

The informal descriptionof the relationship betweeneach pair of speci�ca-
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Figure 5.6: Composition of the architecture: Sharedactors (a) and actions (b).

tions shouldnot substitute their formal composition, which is still missinghere.
The diagram in Figure 5.4 gives a good clue on what remains to be de�ned:
the \ph ysical communication channels", which are formally de�ned using spec-
i�cation morphisms. For each pair of speci�cations, individually represented by
distinct geometric�gures, that diagram shows how to relate their messagesym-
bols. For instance, the messagesmv and sub of agents should be respectively
associated with move and done of servers. Note that relating external to local
symbols yields the direction of the message
o w described above. Also observe
in our examplethat we cannot producea direct translation of the speci�cation
of agents into that of servers nor in the opposite direction. Therefore, to inter-
connecttheseentities we needto de�ne mediating theory presentations to serve
asconnectors.Their nature is illustrated by the diagram in Figure 5.6.

To specify the linguistic structure of the mobile architecture in a formal
manner,wecall the mediating speci�cations in Figure 5.6.aConnector s. Each
of them contains two external messagesymbols only (without axioms as well).
We alsoprovide translations including their contents after necessaryrenamings
into the connectedpresentations. Taking connectors,connectedspeci�cations
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and the morphismsbetween them, the composite theory presentations are de-
�ned by pushout constructions. De�ned in this way, each Component in the
�gure contains all the renamedsymbols and the axioms of the connectedspec-
i�cations, but the symbols identi�ed by the connectorsare equalised. That is
why a messagemove from serverscan be understood asmv when it is delivered
to an agent, for example,no matter its namein the composite component. The
detailed de�nition of connectorsand their morphismsappearsin Figure 5.6.b.

5.3 Verifying Lo cation Managemen t Prop erties

The previous section introduceda set of composedspeci�cations related to lo-
cation management and described the intended behaviour of the speci�ed ob-
jects when properly connected.In this section,we particularise our description
providing moredetails about the dynamic con�guration of our architecture. We
make a number of simplifying assumptionsto obtain a tractable example. In ad-
dition, we sketch the veri�cation of someinteresting properties. Rely-guarantee
assertionsare proposedbelow to capture theseproperties.

5.3.1 Lo cation Space

We considerthe existenceof a non-trivial minimally divided location spacerep-
resented by a tree of height one. This structure consistsin a root and four child
nodes,each of which denoting a quarter of the location plane associated to the
respective compasspoint. The division of theselocation spaceregionsis consid-
eredto be always forbidden. In addition, we assumethat only child nodesmay
eventually communicate with continuation actors created by the root node to
answer inclusionqueries.Under theseconditions,whenever a query is dispatched
to a node in the location space,the query is answeredeventually:

Assertion LOC
init k:new (node; n i ; ni ; l ) (i 2 [1::4]); k:new (root; l ; l ; ~n);

G(8p;q � p = l _ p 2 ~n ! : p:split (q))
rely 8p;q � (9r � l :new (cnt ; q; l ; r )) ! G(8t � (9r; s; v � t:send rpl ; q; r; s; v ()) ! t 2 ~n)
pre x:send in; z; y; x (; )z = l _ z 2 ~n
post 9v � z:send rpl ; y; x; v ()

The derivabilit y of the assertionabove is justi�ed by a caseanalysisar-
gument. First note that the involved actors are always eventually enabledfor
delivery and consumption. Hence,if the recipient of a query is oneof the child
nodes,becausethe result of such queriesdependssolely on the state of the re-
cipient itself (recall that nodesare assumedto remain undivided), the answer is
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locally producedeventually (20.9). If the recipient is the root node, the query is
consumed,a continuation actor is created(20.10)and the query is dispatched to
each child node. According to the precedingargument, a responseis produced
for each of thesequeries. In the end, due to our assumption, the continuation
actor computesthe query result after consumingonly all child node responses
(20.12).

5.3.2 Lo cation Service

Now we can discussthe properties of the main components of our architecture.
Herewe analyseonly a simplesituation in which there are two locationsactually
populatedand a pair of agents representing mobileobjects. Another pair of �xed
agents, oneat each populatedlocation, is alsoassumedto exit in order to support
the handover processof mobile agents. All theseobjects are connectedthrough
a static circular network of server nodes where there is available a sensorper
location and mobile agent.

To formalise the con�guration above according to our previous informal
descriptions,we alsoassumethat there are actors which serve as mobile object
identi�ers. Theseare createdthrough the birth action name, which is presumed
to appearin a theory presentation connectedto MAs . Weusethe logicalunique-
nessof their mail addressesto guaranteeuniquemobileobject identi�cation. The
following de�nitions are alsousedin the assertionsbelow:

ploc(j ) (nearestpopulated location) def= (j � 1 div2) + 1

nsv(j ) (next server) def= j + 1 (mod 4)

psv(j ) (previous server) def= j � 1 (mod 4)

f sv(j ) (nearestserver of �xed agent) def= 2 � (j div3) + 1

msv(j ) (nearestserver of mobile agent) def= 2 � (j div3) + 2

We initially want to show that whenever a mobile object is observed, the
respective observation messagewill eventually be consumedby the server node
in chargeof keepingtrack of the location of the agent:
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Assertion M AG
init init1::3-LOC;

j 2 [1 :: 4]

8
><

>:

k:new (name; naj ); k:new (name; nssploc ( j )
f sv ( j ) );

k:new (ag; aj ; aj ; naj ; nploc ( j ) ); k:new (srv; svj ; svj ; svnsv ( j ) ; naj ; nploc ( j ) ; aj );
k:new (sens; ssploc ( j )

f sv ( j ) ; ssploc ( j )
f sv ( j ) ; svf sv ( j ) ; nssploc ( j )

f sv ( j ) ; nploc ( j ) );
G(/9j 2 [1::4]; p;q; r; s � svj :ins(p;q; r; s)) ;
G(/9i; j 2 [1::4]; p � af sv ( j ) :mv(p;q) _ ssploc ( i )

f sv ( j ) :reloc(p)) ;
G(8j 2 [1::4]; p � (9q; r � p:send at; svj ; q; r ()) ! p = svpsv ( j ) _ 9i 2 [1::2] � p = ssi

f sv ( j ) )
rely rely-LOC
pre x:obs; 9i; j 2 [1::4] � x = ssploc ( j )

f sv ( i ) ; x:id = y; x:l oc= z
post 9g 2 [1::4] � svg:at(y; z) ^ svg:id = y

Sincewe know that each of the actors above is always eventually enabled
for delivery and consumption,we can simply ignore this property again in the
following justi�cation of derivabilit y of the assertionabove. From our con�g-
uration assumptionand (21.9), we infer that oncean observation happens the
respective messageis dispatched to and eventually consumedby a server node.
Two distinct situations may arise: the recipient node controls the relocated ob-
ject agent, or, becausethis is not the case,the observation is sent to the next
server node in the circular list (23.11). The observation messagearrivesat the
appropriate node after reaching at most four such objects.

Now we wish to show that whenever a mobile object is observed, the
respective agent eventually reaches the location of observation. Here we have
to take into account two facts: only continuation actors used in querying the
location spacecan decidewhether to dispatch the query to the remainderof the
list or to use the agent of the current server node, and the relocation process
can only be completeddue to a messagereceived from the new object agent.

Assertion M OV
init init-M AG;

8j 2 [1::4] � G((9p � svj :at(id; p) ^ (svj :loc6= p ^ svj :st = OK _ svj :st = NL )) !
(/9q; r � svj :done(q; r ))W (9s; t; u; w � svj :ag:new (ag; s; t; u; w) ^ /9q; r � svj :done(q; r )))

rely rely-M AG;
8u � (9j 2 [1::4]; p;q; r; s � svj :new (srv; u; svj ; p;q; r; s)) !

G(8t � (9p;q; b� t:send res; u; p;q; b ()) ! 9j 2 [1::4] � t = nploc ( j ) )) ;
8r; s; t; u; j 2 [1::4] � (9p;q � svj :ag:new (ag; u; p;q; r )) !

(: svj :done(t; s))W (t = r ^ s = u))
pre pre-M AG
post 9g 2 [1::4]; s � svmsv (g) :st = OK ^ svmsv (g) :ag = s ^ s:id = y ^ s:loc= z

We have to treat three di�erent situations corresponding to the possiblestates
of the recipient server node: the respective agent is ready to move (st = OK ),
there is no location information available at the moment (st = NL), or the agent
is currently moving (st = MV ). Weclaim hereand show below that whenever an
agent is moving, this processis eventually completedand the respective server
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node is noti�ed about this fact, returning to a ready state sometime in the
future. So, it su�ces to discussthe veri�cation of the other two cases,which
can both be treated asdiscussedin what follows.

If there is location information available saying that the agent is already
at the right location, we reach our conclusiondirectly. Alternativ ely, we can
use(23.9) and (23.6) to connectLOC to M AG and concludethat a movement
requestis dispatchedto the remainderof the circular list (23.15). The movement
requestarrivesat the appropriate server node after reaching at most four such
objects. As a result, a movement request is dispatched to the relocated object
agent (23.14). Becauseour assumptionsprevent that a movement requestarrives
at an agent before a previous relocation processis completed, the request is
consumedby the agent and a replication requestis readily issuedto the correctly
located agent determined in the precedingquerying process(22.6). Eventually,
this messageis consumed,the new agent for the relocated object is createdand
not only the old agent but also the respective server node are noti�ed (22.8).
In the end, the server enters into a ready state pointing to the properly located
new agent (23.16).

Basedon the previousassertion,we can alsoproducean interesting exam-
ple usingour generalcomposition rule. Applying the substitution [xnx0] through-
out, wecangenerateanotherassertionanalogousto the above. Composingthese
two assertionsusing our rule and requiring that x 6= x0, we can concludethat
whenever two mobile object observations happen in parallel at di�erent places,
the respective agents will move to the involved locations eventually.

5.3.3 Other Prop erties of the Mobile Arc hitecture

Location dependent functionality such as ubiquitous messagedelivery can be
speci�ed and veri�ed basedon the framework described above. Each mobile
object agent should be able to query in terms of logical object identi�ers (id)
the location servicefor the location of the recipient. The messageis dispatched
to the �xed agent assumedto exist at that location. Upon receipt, such an agent
either locally delivers the messageto the recipient or forwards the messageto
another agent at the new location of the target object. In a similar context
which does not consider temporary absenceof location information, Sanders
et al. (1997)outlines a proof that each messageeventually reachesthe recipient
provided that this object eventually stopsmoving.
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5.4 Summary and Related Work

As a meansof illustrating that the formalism and discipline proposedin this
thesisapply equally well to designingreal-sizedextensiblesystems,in this chap-
ter we have shown how to approach object-basedmobile systems. As it turns
out, our logical systemand the adoptedrely-guarantee disciplinecanbe directly
applied without any modi�cation or additional coding technique to capture mo-
bilit y. Basically, our approach consistsin annotating located objects with an
additional attribute containing referencesto location objects, as suggestedby
Harter and Hopper (1994), and by assumingthe existenceof a network of �xed
geographicallydistributed objects which can deliver localisedreplication of re-
mote objects soas to support mobilit y. The advantage of approaching mobilit y
in this extra-logical manner is that speci�cation and veri�cation can be carried
out much in the way that we designany systemusing the sameformalism.

A few related work canbe gatheredin the literature, most of which adopt-
ing the programming logic of UNITY (Chandy and Misra 1988). Sanderset al.
(1997) concentrate in specifying and verifying the querying and routing algo-
rithms of a mobile architecture. Their hierarchical organisationof the location
spaceis similar to ours,but the problem is treated in a monolithic, unstructured
manner, which we believe makes both speci�cation and veri�cation more di�-
cult and error prone. Initial work developed by Wilcox and Roman (1996) on
attempting to extend UNITY introduced mobilit y conceptsjust as part of the
re�nement process. If mobilit y arisesin a set of requirements, that approach
would not be so e�ective: initial speci�cations are required before any mobil-
it y aspect can be considered. Recently, the sameresearch group has endowed
UNITY with elaborated logical reasoningprinciples to tackle mobilit y (Roman
et al. 1997,McCann and Roman1998): each UNITY program is required to de-
�ne a speci�c variable containing concretelocations and transient interactions
betweenco-located objects may occur.

In the processcalculi literature, mobilit y has also received a lot of at-
tention, motivating the evolution of the static processcon�gurations of SCCS
(Milner 1983) to the dynamic onesof the � -calculus (Milner et al. 1992). We
have provided evidencehere that most of the featuresof � -calculus processes
can also be speci�ed using our logical system. For instance, we can simulate
recursioncreating continuation actors and exchanging asynchronous messages;
dynamic data structures can be represented as objects and so on. More im-
portantly, the requirements related to mobilit y receive a more re�ned treatment
here as processin the � -calculusare modelled as terms while we adopt theory
presentations to represent objects. On the one hand, it seemsto be easierto
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de�ne notions of simulation and reduction for processes,treating in this way
the re�nement and operational behaviour of the speci�ed objects. On the other,
here it is possibleto specify and reasonabout mobile objects as �rst-class en-
tities using our more expressive logical system,which we feel more appropriate
to represent the real world. Orava and Parrow (1992) recognisethat � -calculus
speci�cations guarantee only that the speci�ed featuresare possible,but these
may not occur. This can only be avoided by adjoining modal or temporal con-
nectivesto processcalculi. It would be interesting to compareour formalism to
thoseproposedby Milner et al. (1993) in terms of expressive power.
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Chapter 6

Concluding Remarks

In this thesis, we have characterisedextensiblesoftware systemsas those sub-
ject to functional or structural dynamic changesthat may rangeover �rst class
entities, which can be created,altered and referenced.We de�ned a �rst-order
branching time logical systemthat seemsto be expressively rich enoughto spec-
ify and verify the properties of interest in this domain and particularised our
system according to speci�c software development approaches that appear to
enforceextensibility. In addition, we have arguedin favour of a proof-theoretic
way of dealing more e�ectively with the rigorous designof extensiblesystems.
A number of contributions and ideas for further work are listed below as an
outcomeof our research.

6.1 Con tributions

Extensible software systemshave beenincreasinglydemandedin practice, par-
ticularly asa meansof bridging the gapbetweenuserrequirements and actually
provided functionality (seeBershadet al. (1995) for an examplerelated to op-
erating systemsdesign). They have alsobecomeimportant in recent yearswith
the advent of networking architectures that are inherently extensible.Although
somerecent work usedthe term extensibility to make referenceto the capability
of somesoftware architectures of presenting extendedfunctionality at run time,
e.g. (Matsuoka 1993), we are not aware of any attempt at characterising this
notion in full. We believe that it is important in software designto elucidatethe
meaningof this and related notions like openness,mobilit y and recon�gurabilit y
| the designspaceof extensiblesystemsin the terminology of Wegner(1987)
| for the sake of avoiding ambiguity and ensuringcorrectness.

Our characterisation appearsto be theoretically important as it identi�es
logical featuresthat are required in representing and verifying the notions men-
tioned above. At the programming level, someother authors have already been

173
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concernedwith providing a formal account for extensibility:

A programminglanguagemay beextendedin data structuresand/or
in computation devices. Extension in data structures means the
possibility of (run-time) modi�cation of the data environment of a
program. This extensioncan be of two kinds: static and dynamic.

(Gergely and �Ury 1991)

However, this distinction betweendata and computing units of extensionseems
to beappropriateonly at lower abstraction levels. That is why wehave preferred
to develop instead a study of various software development approachesand on
how they enforce extensibility. The way we represent extension, relying on
hidden symbols, is similar to the aforementioned work:

The extension in computation devicesprovides new control struc-
tures in our case. In order to introduce a new control structure we
have to provide all necessaryfunctions and relations required to re-
alise the new control. Therefore, extensionin computation devices
canalsobe de�ned asa static extensionof data structures. (Gergely
and �Ury 1991)

It is clear that the rigorousdesignof extensiblesystemsrequiresa suitable
logical system. In this thesis we have de�ned a new �rst-or der branching time
logical systemwith equality for this purpose. Our choiceof a �rst-order system
with equality stemsfrom our desireto deal with communities of namedobjects
which in general may recon�gure and grow in number without any a priori
bound. A temporal logical systemis chosenbecausewe wish to represent many
distinct modesof interaction betweencomponents, which may co-existand thus
behave concurrently. Finally, the assumptionof branching 
o ws of time appears
to be an adequateway of talking about the existenceof somebehaviours in
which a particular event occurs,typically in open systemspeci�cations, without
committing all speci�ed behaviours to present the sameproperty. Many similar
logicscertainly exist, the temporal logic of actionsdeveloped by Lamport (1994)
is the most notable example, but we prefer to adopt our own system for the
reasonsdetailed in Chapter 2.

The raw logical systemmentioned above was particularised in Chapter 3
accordingto two distinct software development approacheswhich enforceexten-
sibilit y. We have proposedan axiomatisation of the actor model, which hasbeen
semantically studied by a number of authors. We also showed how to compose
actor speci�cations using categoricalconstructions called co-limits and how to
take advantage of the complexstructure of actor descriptionsto decomposethe
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veri�cation process. In particular, to verify global properties of actor compo-
nents, we introduceda new rely-guarantee discipline basedon simple temporal
sentences.Thesedevelopments constitute a suitable framework for open recon-
�gurable systemsdesign,which indeedpresent all the aforementioned properties
of extensiblesystems.In Chapter 3, another mode of interaction and a distinct
software development approach werealsoshown to be representable in terms of
actor speci�cations and morphisms,which shows that the actor model is expres-
sively rich enoughfor many purposesin software design.

In Chapter 4, we sketched, by sticking to actor speci�cations but allowing
referencesto their hiddensymbols in a disciplinedmanner,howmeta-levelobjects
can be given a formal treatment. We argued that such a treatment should be
regardedas necessaryto ensurein an abstract and elegant way separation of
concernsbetweenbase-level objects dealingwith the problem domain and meta-
level objects handling the systemitself. On the other hand, we arguedthat one
cannot rely on the assumptionof completelygeneralmeta-level support, that of
computational re
ection, while defendingsystematicsoftware development.

Finally, we showed in Chapter 5 that a family of mobile systemscan be
rigorously designed using the sameformal constructionsproposedin the rest of
the thesis. We choseas a full examplea location management architecture for
mobile objects. This exampleserved to illustrate that our formalism scaleswell
to the treatment of real problems.

6.2 Further Work

Our logical system and its de�nition may give rise to interesting research. It
appears to be worthwhile investigating if the axiom schemaslisted in Figure
2.15are independent from each other. As an outcomeof this investigation, one
should be able to assessif it is possibleto reducethe number of schemaswhile
retaining their intuitiv e meaning. Another direction for further work is to study
if a slightly distinct semantics canbe found soasto obtain a completenessresult.
This may be possiblefollowing the results already obtained by Andr�eka et al.
(1995)concerninglinear time logic. A morepragmatic continuation of this work
is to provide automated support for software development by implementing our
axiomatisation and a number of veri�cation tactics using an interactive logical
framework like Isabelle (Paulson1994).

Another areathat appearsto deserve future investigation is the re�nement
of speci�cations in a way that ensuresextensibility. We have studied approaches
to the software processthat enforceextensibility and can be captured at the
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speci�cation level, but a long chain of re�nement stepsmay be necessarybefore
extensiblesoftware is obtained. In order to cater for the dynamic con�guration
of components speci�ed using rely-guarantee constructions, their initialisation
constraints and assumptionsabout their environment may be realisedascoordi-
nation languageconstructs. In this case,speci�cations should be re�ned in the
usual way to obtain a set of programswhenever possible.The challengehere is
to de�ne a systematicmethod which is also compositional in that implementa-
tions of any complexspeci�cation can be veri�ed basedon the veri�cation that
their components satisfy the constituents of the original speci�cation.

Someother topics studied herewhich arenot directly related to extensibil-
it y appear to have potential for practical application. It may be interesting to
investigatehow to capture multi-languageproof calculi in terms of generallogi-
cal structures asdiscussedin Chapter 2. Our synchrony transformation de�ned
in Chapter 3 should be further investigated. In particular, to determine con-
ditions ensuringthat the transformation \preserves" deadlock freedomremains
an open problem. In addition, it would be interesting to apply our discipline for
designingmeta-level architectures of Chapter 4 in other situations and assessif
more generalde�nitions can be proposed.
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Useful Theorems

Formal proofs of the theoremsstated in this appendix may be obtained directly
from the author.

I.1 Classical Prop ositional Logic

Postulating the axiomatization of classical propositional logic (CPL) discussed
in Section2.3, the following theoremsover � 2 obj SigC P L are provable:

(HS) f (p ! q); (q ! r )g ` C P L
� p ! r (hypothetical syllogism)

(REFL) ` C P L
� p ! p (re
exivit y)

(EXP) ` C P L
� p ! ((p ! q) ! q) (expansion)

(PERM) ` C P L
� (p ! (q ! r )) ! (q ! (p ! r )) (permutation)

(LTRAN) ` C P L
� (p ! q) ! ((r ! p) ! (r ! q)) (left transitivit y)

(RTRAN) ` C P L
� (p ! q) ! ((q ! r ) ! (p ! r )) (right transitivit y)

(CONT) ` C P L
� (p ! (p ! q)) ! (p ! q) (contraction)

(NEG-L) ` C P L
� p ! (: p ! q)

(DOUB) ` C P L
� :: p ! p (double negation)

(NEG-R) ` C P L
� (p ! q) ! ((p ! : q) ! : p)

(CONP) ` C P L
� (p ! q) ! (: q ! : p) (contrapositive)

(OR-L) f p ! q; r ! qg ` C P L
� p _ r ! q

(OR-R) f p ! qg ` C P L
� p ! q_ r [or f p ! qg ` C P L

� p ! r _ q]
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(AND-L) f p ! qg ` C P L
� p ^ r ! q [or f p ! qg ` C P L

� r ^ p ! q]

(AND-R) f p ! q; p ! r g ` C P L
� p ! q^ r

(AND-E) f p ^ qg ` C P L
� p [or f p ^ qg ` C P L

� q]

(AND-I) f p;qg ` C P L
� p ^ q

(IFF-RL) f p ! q; q ! pg ` C P L
� p $ q

(IFF-E) f p $ qg ` C P L
� p ! q [or f p $ qg ` C P L

� q ! p]

(DM) ` C P L
� : (p _ q) $ : p ^ : q [or : (p ^ q) $ : p _ : q] (De Morgan)

(DIST-O A)
(DIST-A O)

` C P L
� p _ (q^ r ) $ (p _ q) ^ (p _ r )

[or p ^ (q_ r ) $ (p ^ q) _ (p ^ r )]
(distribution of _ over ^ )

1

(DIST-IF A)
(DIST-IF O)

` C P L
� (p ! (q^ r )) $ (p ! q) ^ (p ! r )

[or (p ! (q_ r )) $ (p ! q) _ (p ! r )]
(distribution of implication over ^ and _)

(REPL-CPL) f x $ yg ` C P L
� p[qnx] $ p[qny] (replacement)

I.2 Prop ositional Linear Time Logic

Postulating the axiomatization of linear time propositional logic (PLT L) dis-
cussedin Section2.4, the following theoremsover � 2 obj SigP LT L are provable:

(REPL-PL TL) f x $ yg ` P LT L
� p[qnx] $ p[qny] (replacement)

(DIST-ORV ) ` P LT L
� pV r _ qV r $ (p _ q)V r (distribution of V over _)

(DIST-ANDV ) ` P LT L
� pV (q^ r ) $ pV q^ pV r (distribution of V over ^ )

(IDEM-F) ` P LT L
� FF p $ Fp (idempotenceof F)

(IDEM-G) ` P LT L
� Gp $ GG p (idempotenceof G)

(DUAL-GF) ` P LT L
� F(: p) $ : Gp (dualit y betweenG and F)

(REFL-G) ` P LT L
� Gp ! p (re
exivit y of G)

(MON-G) ` P LT L
� G(p ! q) ! (Gp ! Gq) (monotonicity of G)

1A sentence with p at the right-hand side of each sub-formula is also provable.
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(RPL-GX) ` P LT L
� Gp ! X p

(EXP-GX) ` P LT L
� Gp ! X Gp

(G > ) ` P LT L
� G>

(NEG-V > ) ` P LT L
� : (? V > )

(NEG-V ? ) ` P LT L
� : (? V ? )

(FUN-X) ` P LT L
� : X p $ X (: p) (functionalit y of X )

(MON-X) ` P LT L
� X (p ! q) ! (X p ! X q) (monotonicity of X )

(MON-GX) ` P LT L
� G(p ! q) ! (X p ! X q)

(DIST-ANDX) ` P LT L
� X (p ^ q) $ X p ^ X q (distribution of X over ^ )

(FIX-V ) ` P LT L
� qV p $ X (q_ p ^ qV p) (�xed point of V )

(FIX-U) ` P LT L
� pU q $ q_ (p ^ X (pU q)) (�xed point of U )

(FIX-F) ` P LT L
� Fp $ p _ XF p (�xed point of F)

(FIX-G) ` P LT L
� Gp $ p ^ X Gp (�xed point of G)

(COM-GX) ` P LT L
� GX p $ X Gp (commutativit y of G and X )

(COM-FX) ` P LT L
� FX p $ XF p (commutativit y of F and X )

(RPL-UF) ` P LT L
� pU q ! Fq

(MON-GF) ` P LT L
� G(p ! q) ! (Fp ! Fq)

(DIST-ORF) ` P LT L
� F(p _ q) $ Fp _ Fq (distribution of F over _)

(DIST-ANDG) ` P LT L
� G(p ^ q) $ Gp ^ Gq (distribution of G over _)

(DIST-ANDF) ` P LT L
� F(p ^ q) ! Fp ^ Fq (distribution of F over ^ )

(DIST-ORG) ` P LT L
� Gp _ Gq ! G(p _ q) (distribution of G over _)

(LIN-FX) ` P LT L
� Fp ^ Fq ! F(p ^ q) _ F(p ^ XF q) _ F(q ^ XF p)

(LIN-G) ` P LT L
� G(Gp ! q) _ G(Gq ! p)

(DIST-ORGF) ` P LT L
� GF (p _ q) $ GF p _ GF q

(DIST-ANDF G) ` P LT L
� FG(p ^ q) $ FGp ^ FGq
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(COM-F G) ` P LT L
� FGp ! GF p

(MON-GU) ` P LT L
� G(p ! q) ! (pU r ! qU r )

[or G(p ! q) ! (rU p ! rU q)]

(MON-GW ) ` P LT L
� G(p ! q) ! (pW r ! qW r )

[or G(p ! q) ! (rW p ! rW q)]

(RPL-WUF) ` P LT L
� pU q $ pW q^ Fq

(TRAN-W ) f p ! qW r; r ! qW sg ` P LT L
� p ! qW s (transitivit y of W )

The set of axiom schemesf DUAL-GF , REFL-G , MON-G , RPL-GX ,
EXP-GX , FUN-X , MON-X , A10-G , FIX-U , RPL-UF g togetherwith R1-
MP correspondspreciselyto the propositional part of the axiomatization of the
temporal logic of programsproposedin (Manna and Pnueli 1983).

I.3 Prop ositional Branc hing Time Logic

Postulating the axiomatization of branching time propositional logic (PBTL)
discussedin Section2.5, the theoremsover � 2 obj SigP B T L below are provable:

(DUAL-AE) ` P B T L
� E(: p) $ : A p (dualit y betweenA and E)

(REPL-PBTL) f x $ yg ` P B T L
� p[qnx] $ p[qny] (replacement)

(E-R) ` P B T L
� p ! Ep

(MOD-B) ` P B T L
� p ! AE p

(CANC-EA) ` P B T L
� EA p ! p (cancelationof EA )

(IDEM-A) ` P B T L
� A p $ AA p (idempotenceof A )

(MON-AE) ` P B T L
� A (p ! q) ! (Ep ! Eq)

(DIST-ORE) ` P B T L
� E(p _ q) $ Ep _ Eq (distribution of E over _)

(DIST-ANDA) ` P B T L
� A (p ^ q) $ A p ^ A q (distribution of A over ^ )

(DIST-ANDE) ` P B T L
� E(p ^ q) ! Ep ^ Eq (distribution of E overr ^ )

(DIST-ORA) ` P B T L
� A p _ A q ! A (p _ q) (distribution of A over _)

(COM-A G) ` P B T L
� A Gp ! GA p (commutativit y of G and A )
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(COM-XA) ` P B T L
� AX p ! XA p (commutativit y of A and X )

(COM-EF) ` P B T L
� FE p ! EF p (commutativit y of E and F)

(COM-EX) ` P B T L
� XE p ! EX p (commutativit y of E and X )

(IND-A G) ` P B T L
� A G(p ! X p) ! (p ! XA Gp) (branching induction)

I.4 Classical First-Order Logic

Postulating the axiomatization of classical �rst-or der logic (F OL) discussedin
Section2.6, the following theoremsover � 2 obj SigB F O L are provable:

(ALL-E) ` F O L
� 8x � p[x] ! p

(MON- 8) ` F O L
� 8x � (p ! q) ! (8x � p ! 8x � q)

(monotonicity of 8)

(GEN- 8) f pg ` F O L
� 8x � p

(DUAL- 89) ` P B T L
� 8x � (: p) $ :9 x � p (dualit y between8 and 9)

(REPL-F OL) f x $ yg ` F O L
� p[qnx] $ p[qny] (replacement)

(MON- 89) ` P B T L
� 8x � (p ! q) ! (9x � p ! 9x � q)

(EX C-89) ` F O L
� 8x � (p[x] ! q) $ (9x � p[x] ! q)

[or 9x � (p[x] ! q) $ (8x � p[x] ! q)]
provided that x 62F ree(q).

(MO V-IF 8)
(MO V-IF 9)

` F O L
� 8x � (p ! q[x]) $ (p ! 8x � q[x])

[or 9x � (p ! q[x]) $ (p ! 9x � q[x])]
provided that x 62F ree(p).

(MO V-AND 8)
(MO V-AND 9)

` F O L
� 8x � (p ^ q[x]) $ (p ^ 8x � q[x])

[or 9x � (p ^ q[x]) $ (p ^ 9x � q[x])]
provided that x 62F ree(p).

(DIST-AND 8) ` F O L
� 8x � (p ^ q) $ 8x � p ^ 8x � q

(distribution of 8 over ^ )

(DIST-OR 9) ` F O L
� 9x � (p _ q) $ 9x � p _ 9x � q

(distribution of 9 over _)
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I.5 Man y-Sorted Logic with Equalit y

Postulating the axiomatization of many-sorted logic with equality (M SF OL)
discussedin Section 2.6.1, the following theoremsover � 2 obj SigM S F O L are
provable:

(REPL-F OL) f x $ yg ` M S F O L
� p[qnx] $ p[qny] (replacement)

(REFL-EQ) ` M S F O L
� x = y ! y = x (re
exivit y of equality)

(TRAN-EQ) ` M S F O L
� x = y ^ y = z ! x = z (transitivit y of equality)

I.6 First-Order Temp oral Logic

Postulating the axiomatization of linear time many-sorted �rst-or der logic with
equality (LT M SL) discussedin Section 2.7, the following theoremsover � 2
obj SigLT M S L are provable:

(FUN) ` LT M S L
� f (x1; : : : ; xn ) = x ^ f (x1; : : : ; xn ) = y ! x = y

for any f 2 F unct(�) [ Attr (�) with arity (f ) = n.

(BAR C-G) ` LT M S L
� 8x � Gp $ G(8x � p) (Barcan for G)

(BAR C-X) ` LT M S L
� 8x � X p $ X (8x � p)

[or 9x � X p $ X (9x � p)]
(Barcan for X )

(BAR C-F) ` LT M S L
� F(9x � p) $ 9x � Fp (Barcan for F)

(BAR C-GF) ` LT M S L
� GF (9x � p) $ 9x � GF p (Barcan for GF )

(BAR C-F G) ` LT M S L
� 8x � FGp $ FG(8x � p) (Barcan for FG)

(BAR C-A) ` LT M S L
� 8x � A p $ A (8x � p) (Barcan for A )

(BAR C-E) ` LT M S L
� E(9x � p) $ 9x � Ep (Barcan for E)
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Remaining Cases in the Pro of of
Soundness

We developherethe remainingcasesof the soundnessproof for our many-sorted
�rst-order branching time logic with equality M SBTL. The corresponding ax-
ioms appear in Figure 2.15.

(A2-I) Supposethat (i) (� ; N; L; wi ) j= p ! (q ! r ) and (ii) it is not the case
that (� ; N; L; wi ) j= (p ! q) ! (p ! r ). From (i) and two applications
of S3, it is clear that (iii) if (� ; N; L; wi ) j= p then (� ; N; L; wi ) j= q im-
plies (� ; N; L; wi ) j= r . From (ii) and S3, (iv) (� ; N; L; wi ) j= p implies
(� ; N; L; wi ) j= q, (v) (� ; N; L; wi ) j= p but (vi) (� ; N; L; wi ) j= r doesnot
hold. Applying (v) in (iv) results in (� ; N; L; wi ) j= q, which in turn canbe
usedtogether with (v) in (iii) to show that (� ; N; L; wi ) j= r , contradicting
(vi) in this way. Therefore,S3 and the negationof our assumptionallow us
to concludethat (� ; N; L; wi ) j= (p ! (q ! r )) ! ((p ! q) ! (p ! r ));

(A3-I) Supposethat (i) (� ; N; L; wi ) j= : q ! : p and (ii) it is not the casethat
(� ; N; L; wi ) j= p ! q. From (i) and S3, it is clear that (iii) (� ; N; L; wi ) j=
: q implies (� ; N; L; wi ) j= : p. Using (ii) and again S3, we also infer that
(iv) (� ; N; L; wi ) j= p but (v) (� ; N; L; wi ) j= q doesnot hold. S2 and (v)
allow us to say that (� ; N; L; wi ) j= : q, but using this fact in conjunction
with (iii) shows that (iv) is contradicted. Therefore, by applying S3 to
the negation of our assumption,we concludethat (� ; N; L; wi ) j= (: q !
: p) ! (p ! q);

(A5-GV) Supposethat (i) (� ; N; L; wi ) j= G(p ! q) and (ii) (� ; N; L; wi ) j=
rV p ! rV q doesnot hold. From (ii) and S3, we have (� ; N; L; wi ) j= rV p
but (� ; N; L; wi ) j= rV q is not the case.According to S7, this meansthat
(iii) there is an sj 2 domL with L(wi ) < L(wj ) such that (� ; N; L; wj ) j= r
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and (� ; N; L; wk) j= p for any wk 2 domL whereL(wi ) < L(wk) < L(wj ),
and (iv) for every wm 2 dom L with L(wi ) < L(wm ), (� ; N; L; wm ) j= r
and (� ; N; L; wn) j= q for any wn 2 domL whereL(wi ) < L(wn ) < L(wm )
are not both true. In addition, the de�nition of satisfaction of Gp, (i)
and S3 show that (v) (� ; N; L; wj ) j= p implies (� ; N; L; wj ) j= q for any
wj 2 dom L such that L(wi ) � L(wj ). Applying the secondhalf of (iii)
in (v), we infer that (� ; N; L; wo) j= q for every wo 2 dom L such that
L(wo) < L(wj ). For wm = wj , when we conjoin this partial result to
(iv), we obtain a contradiction. We conclude, from the negation of our
assumptionand S3, that (� ; N; L; wi ) j= G(p ! q) ! (rV p ! rV q);

(A7-V) Supposethat (i) (� ; N; L; wi ) j= (p ^ qV p)V p. From (i), the de�nition
of satisfaction of ^ and S7, we can seethat (ii) there is wj 2 domL with
L(wi ) < L(wj ) such that (� ; N; L; wj ) j= q ^ qV p and (� ; N; L; wk) j= p
for any wk 2 domL whereL(wi ) < L(wk) < L(wj ). Hence,from the �rst
half of (ii) and the de�nition of satisfactionof ^ , it is clear that (iii) there
is an wm 2 dom L with L(wj ) < L(wm ) such that (� ; N; L; wm ) j= q and
(� ; N; L; wn) j= p for any wn 2 dom L where L(wj ) < L(wn ) < L(wm ).
Because,L(wi ) < L(wj ), wecancertainly say from the �rst half of (iii) and
the secondhalf of (ii) that there is wj 2 domL with L(wi ) < L(wj ) such
that (� ; N; L; wj ) j= q and (� ; N; L; wk) j= p for any wk 2 dom L where
L(wi ) < L(wk) < L(wj ). We concludeusing the de�nition of satisfaction
of ^ , S7 and S3 that (� ; N; L; wi ) j= (p ^ qV p)V p ! qV p;

(A9-V) Suppose that (i) (� ; N; L; wi ) j= (p _ q)V r and (ii) (� ; N; L; wi ) j=
pV r _ qV r is not the case.From (i), S7 and the de�nition of satisfaction
of _, (iii) there is wj 2 dom L with L(wi ) < L(wj ), (� ; N; L; wj ) j= p or
(� ; N; L; wj ) j= q and for any wk 2 dom L whereL(wi ) < L(sk) < L(wj ),
(� ; N; L; wk) j= r . Moreover, from (ii), S7 and the de�nition of satisfaction
of _, we infer that (iv) for every wl 2 dom L such that L(wi ) < L(wl ),
(� ; N; L; wl ) j= p and (� ; N; L; wl ) j= q are neither true or there is wm 2
dom L such that L(wi ) < L(wm ) < L(wl ) where it is not the casethat
(� ; N; L; wm ) j= r . In particular, (iv) holds for wl = wj , which contradicts
(iii). Therefore, by applying S3 to the negation of our assumption, we
concludethat (� ; N; L; wi ) j= (p _ q)V r ! pV r _ qV r ;

(A11-X) The de�nition of > and S3 easily entail that (� ; N; L; wi ) j= > . In
particular for wk 2 domL such that L(wk) = L(wi )+ 1, which existsand is
unique due to the isomorphismbetweendomL and cod L, (� ; N; L; wj ) j=
> . Therefore,applying the de�nition of satisfactionof X p, (� ; N; L; wi ) j=
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X > ;

(A14-A) If (� ; N; L; wi ) j= A p then (� ; N; L; (L � 1 � L)(wi )) j= p, from S8, L �=
L and the fact that each L is invertible. But (L � 1 � L)(wi ) = I (wi ) = wi .
Therefore,using S8 and S3, (� ; N; L; wi ) j= A p ! p;

(A18-Eb eg) Assumethat (i) (� ; N; L; wi ) j= beg is falseand (ii) there exists
L i which agreeswith L on the state propositions satis�ed up to i such
that (� ; N; L i ; (L � 1

i � L)(wi )) j= beg. From (ii) and S6, we infer that
L i ((L � 1

i � L)(wi )) = 0. But L i � L � 1
i = I , henceL(wi ) = 0. Using S6

again, we reach (� ; N; L; wi ) j= beg, which contradicts (i). Therefore,
basedon S3, S8, we concludethat (� ; N; L; wi ) j= E(beg) ! beg;

(A19- 8) Assumethat (� ; N; L; wi ) j= 8x � p(x). From S4, for every v 2 cod N
and every assignment Nv such that Nv(y) = N (y) if y 6= x or Nv(y) = v
otherwise, (� ; Nv; L; wi ) j= p. This holds in particular for v = [[t]]� ;N v (wi )
such that t 2 Term(�) s such that Class(�)( x) = s. Therefore, using
S3, by a structural induction argument on the notion of interpretation
basedon the de�nition of substitution and assignment, we concludethat
(� ; N; L; wi ) j= 8x � p ! p[xnt];

(A21-EQ) For any t 2 Term(�), [[t]]� ;N (wi ) = [[t]]� ;N (wi ), becauseterms have a
functional interpretation. From S5, we concludethat (� ; N; L; wi ) j= (t =
t);

(A25-NEQG) Assumethat (� ; N; L; wj ) j= (t1 6= t2) for t1, t2 free from any
attribute symbol. In particular, for any wi 2 dom L such that L(wj ) <
L(wi ), (� ; N; L; wi ) j= (t1 6= t2), due to S2 and because[[t1]]

� ;N (wi ) 6=
[[t1]]� ;N (wj ) and similarly for t2. From the de�nition of satisfaction of G,
6= and S3, we concludethat (� ; N; L; wi ) j= (t1 6= t2) ! G(t1 6= t2);

(A27-EQA) Assumethat (� ; N; L; wi ) j= (t1 = t2) for t1, t2 free from attribute
symbols. In particular, for any L i which agreeswith L on the state propo-
sitions satis�ed up to i , (� ; N; L i ; (L � 1

i � L)(wi )) j= (t1 = t2) due to S2 and
because[[t1]]

� ;N (wi ) = [[t1]]� ;N ((L � 1
i � L)(wi )). Therefore, applying S8 and

S3, we concludethat (� ; N; L; wi ) j= (t1 = t2) ! A (t1 = t2).
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