Electronic Notes in Theoretical Computer Science 67 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume67.html 20 pages

A Branching Time Logical System for Open
Distributed Systems Development

Carlos H. C. Duarte 12

BNDES, Av. Chile 100, Rio de Janeiro, RJ, Brasil, 20001-970
Universidade Estdcio de Sd, Rua do Bispo 83, Rio de Janeiro, RJ, Brazil, 20261-902

Tom Maibaum *

Department of Computer Science, King’s College London, Strand, London, UK, WC2R 2LS

Abstract

We propose a new first-order many-sorted branching-time logical system with equality devoted
to support the development of open distributed systems. The inherent characteristics of this
family of systems, which ought to be treated in rigorous software development processes, are
used throughout the paper to motivate the specific features of our formalism. We present a
solution of the drinking philosophers problem as a way of illustrating the application of this
new logical system.

Keywords: Temporal Logic; Specification; Verification; Distributed Systems; Software Devel-
opment.

1 Introduction

Since a seminal work of Amir Pnueli in the late seventies [20], temporal logics have been
applied with great success in many branches of Computer Science, including requirement
engineering, software specification and verification, stepwise refinement and systematic
testing. Regarding the development of concurrent systems, Manna and Pnueli initially
showed how temporal proof systems could be associated to programming languages in
a natural way [17]. Next, Barringer solved an important problem of composability [5],
making it possible to rely on the structure of concurrent programs in proving temporal
properties. Subsequently, Fiadeiro and Maibaum raised the abstraction level of his work
by also showing that concurrent software systems could be specified and verified in a
modular way based on temporal theory presentations [10]. This chain of results concerns
different but connected stages of rigorous software development processes.

1 Partially supported by CNPq research grant number 301037 /00-0.
2 E-mail: carlos.duarte@computer.org
3 E-mail: tom@maibaum.org

(©2002 Published by Elsevier Science B. V.

DUARTE AND MAIBAUM

The choice to adopt specific software development approaches and the necessity to
treat particular application domains have played a central role in the decision to either
choose an existing temporal logical system or develop a new one. For instance, Sernadas
and others developed a linear time logical system particularly tailored to object-oriented
approaches [21]. Lamport and Abadi have applied the temporal logic of actions in a
multitude of domains [15], treating in particular the development of distributed fault-
tolerant systems. What is involved in this kind of decision is the identification of the
inherent characteristics of the approach or domain at hand, together with an assessment
of each logical system — in terms of its language, models, axiom schemes, inference
rules and automated support — in order to determine if these inherent characteristics
are supported by the formalism in ways that somehow facilitate software development.

Nowadays, with the advent of networking technologies making it possible to deploy
computing power over wide geographic areas, there exists a growing interest in soft-
ware development approaches that not only help identifying distribution as a problem
requirement but also allow software engineers to introduce distribution as a design or
implementation decision during the development process. Distributed systems may be
characterised as collections of loosely interconnected not necessarily co-located objects.
Objects in this context are an abstraction of more concrete entities such as autonomous
agents or computing units. Incidentally, our definition admits concurrent systems as a
particular case. Distributed objects may be put together in the form of components,
which have explicit interfaces with their surrounding environment. Those distributed
systems or components which retain almost none control over their environment are said
to be open, an important property not only to allow design independence but also to
enforce composability, incrementability and reuse of the respective software artifacts.

Despite their current appeal, open distributed systems appear to receive little support
directed towards software development in existing logical systems. This seems to be the
case mostly due to the complexity of their inherent characteristics. Distributed objects
may interact through diverse modes such as message passing or resource sharing. The
number of participants may vary in each interaction mode. The internal and external
configuration of a component may be fixed at design time or change dynamically. Ideally,
a logical system devoted to open distributed systems development should permit the
specification and verification of all the details present in distributed system models.

In this paper, we propose a new temporal logical system which we consider appropriate
for developing open distributed systems in a rigorous way. Our technical contribution
is organised in two parts. In Section 2, we describe the semantic models and the proof
calculus of our logical system. In Section 3, we illustrate these formal constructions
presenting a solution of the drinking philosophers problem [6]. We conclude the paper
with some remarks concerning related and future research.

2 A Logical System for Open Distributed Systems

2.1 Languages and Models

Our logical system is organised in terms of a family of languages, each of which defined
using logical and extra-logical symbols. We depart from the collection of first-order lan-
guages and adopt a countably infinite family of logical variables V. It is possible to

2

DUARTE AND MAIBAUM

represent in this way the potentially infinite number of messages exchanged by the ob-
jects of some distributed systems, something out of reach of conventional propositional
temporal logical systems as extensively studied by Sistla [22], Koymans [12] and others.
We also adopt many-sorted languages, since sort symbols appear to make logical con-
structions more readable and structured. Sorts and all the other extra-logical symbols
belong to signatures, which are defined below:

Definition 2.1 (Signature) A signature A = (3, T, A) is a triple of disjoint and finite
sets of symbols such that:

« ¥ = (95, Q) is a universe signature: S is a set of sort symbols and Q2 is an Sf’i_nx S-indexed
family of function symbols;

e ['isan S ;‘m—indexed family of action symbols;
e Ais an Sf*m x S-indexed family of attribute symbols.

The indexing of signature symbols using sorts induces a type over each language ex-
pression. A functional construction taking arguments of sort (si,...,s,) and producing
results of sort s, i.e. indexed by S;,n x S, is said to have type type(f) = (s1,...,5n) = s.

Each kind of signature symbol has a different interpretation. Sort symbols represent
non-empty collections of values. The symbols in ¥, as well as the variables in V), are total
and rigid, i.e. they always have a meaning which does not vary as time passes. On the
other hand, the elements of I'U A are flexible, meaning that they have a time dependent
interpretation. Action symbols in I' denote the occurrence of instantaneous events. They
are different from the attribute symbols in A, which are total and functional, representing
current state. Variables, functions, actions and attributes with this kind of interpretation
appear quite often in open distributed systems representations.

Before formalising the meaning of signature symbols, we need to clarify the nature of
the adopted time flows. The usual view that the whole universe came into existence at
once leads us to consider that all time flows have their beginning at the same instant.
Note that distributed systems usually have a distinguished point in time from which
they begin to present some observable behaviour and the adopted flows of time allow
us to represent this characteristic easily. For the same reason, we choose to deal only
with infinite time flows here, which also comply with the general situation in distributed
systems of not necessarily having to exhibit only stable properties from a specific point
in time onwards. Concerning distributed programs, an example of this kind of property
is termination, a unusual requirement in this domain which turns out to be representable
using the adopted time flows as well. We restrict our attention to discrete flows here,
for the sake of simplicity.

Temporal flows are normally classified according to their linear or branching nature.
Most temporal logics of programs, although based on linear time flows, also rely on an
additional enabledness predicate to represent the possibility of some subsequent com-
putations. The design of distributed systems which are open also appears to require a
way of expressing possibility, not just to represent possible computation steps but also
to establish looser connections with their environment, which are an inherent part of
each problem. This is so because requiring the environment to behave in a particular
manner may contradict the openness property. However, we only know how to express
possibility using branching time flows. In fact, possibility is a kind of property defined

DUARTE AND MAIBAUM

by current and/or future events, but it is also conceivable to take into account time
flows which branch towards the past. Considering that in distributed systems the past
is regarded as the necessary sequence of events to justify the present situation and also
that in initiallised time flows it is usually possible to adopt an expressively complete set
of future time connectives to express any relevant property, we are relieved from treating
the additional complexity of the past here.

Two plausible and completely distinct views concerning the definition of branching
time are available in the literature [7,26]. The so-called Peircean view advocates that a
formula asserting the eventual occurrence of a proposition is true at a given moment x
if and only if the proposition is true at some moment in some future of x. Conversely,
the Ockhamist view argues that it is meaningless to discuss the truth value of a formula
unless additional information concerning the actual future is provided. To clarify this
distinction, a metaphor can be defined. Assume that a system and two omniscient
observers are given, Eager and Lazy. Both see the system evolving almost as defined in
the previous paragraphs, in that each time flow has an initial instant, is discrete and
infinite. Eager, who adopts a Peircean view, politely ignores everything else he knows
and follows the system closely, adopting as his own current moment in time that of the
observed system. According to his perceptions, what will happen in the future spans as
many branches of undetermined possibilities. Lazy, on the contrary, adopts an Ockhamist
view and prefers to stay outside any conceivable time frame. He can only see the distinct
behaviours of the system as a set of linear terminated sequences. For him, what could
have otherwise been the case at some moment of a behaviour of the system is defined
in terms of other possible behaviours. Comparing these two conceptually distinct views,
we can conclude that what is regarded as a branching-time logic depends on the chosen
kind of observer. Both are reasonable views that allow us to talk about possibility.

Mathematical models for branching time abound in the literature. The research on
semantic models of temporal logics has resulted in a wide range of mathematical struc-
tures [24]. In the realm of concurrent systems, event structures and transition systems
have been preferred [23]. Here, we adopt structures of the second kind to capture an
Ockhamist view of branching time, since we can define in this way a linear time fragment
of the logic based on future time connectives and consequently rely on a standard set
of axiom schemes and inference rules, which is rather standard. Therefore, we represent
branching time structures as sets of linear sequences of worlds and capture branching
points in time through the initial points of distinction in such sequences.

Definition 2.2 (Branching Structure) A branching-time structure or frame is a tu-
ple («, ag, p, A) where:

* a and oy C « are sets of worlds and initial worlds respectively;

* p:a— P(a) is the accessibility relation (a powerset function);

* A is a non-empty set of possible behaviours. Each L € A is a function such that:

(i) dom L C « and cod L 4f N;

(ii) Yw € dom L - L(w) = 0 <> w € ay;
(iii) Yw,w' € dom L - L(w) = L(w'") —» w = w';
(iv) Vn € cod L - 3w € dom L - L(w) = n; and

(v) Vw,w' € dom L - L(w") = L(w) + 1 = w' € p(w).

DUARTE AND MAIBAUM

Each sequence of worlds determining a behaviour in A (not necessarily of any computer
program) is in a one to one correspondence with the natural numbers, according to
items (1), (3) and (4). Hence, every L € A is invertible and we use this fact to define
the meaning of the adopted branching-time modality.

Based on branching-time structures, signature symbols are interpreted as follows:

Definition 2.3 (Interpretation Structure) An interpretation structure for a signa-
ture A = (3, A, 1), ¥ = (S, Q),is a tuple § = (B, U, G, A) where:

* B is a branching-time structure;

* U maps each s € S to a non-empty collection sy and each f € Q, type(f) =

(S1y---38n) = S, t0 fyr 181, X ... X Spy — SU;

» G maps each g € A, type(g9) = (s1,...,5,) = s, toa G(g) : S1, X ... X Sp, — @ = Sy}
» A maps each a € I, type(a) = (s1,---,5n), to A(a) : s1, X ... X Sy, = P ().
Whenever « appears in the interpretation of some symbols, this is connected to their
flexible, time-dependent meaning. Consequently, attribute symbols denote total func-
tions which vary with time and action symbols denote events that may happen at some
time instants in parallel among themselves or with respect to other events belonging to
enclosing environments. On the other hand, sort symbols are interpreted as fixed sets of
values and function symbols as immutable total functions.

Terms stand for meaningful values. In their definition, we assume given a partial
classification =5 for each signature A. Z=a associates to some variables sort symbols
in A. For a symbol s € Sa, we also represent the set of s-classified variables as
Es % {v € V|Ea(v) = s}. The set of terms generated by a signature A is defined below:

Definition 2.4 (Terms) The S-indexed set of terms T'(Z4) is defined as follows, pro-
vided that z € Z,UQ; U As; f € Qa, g € Aa and type(f) = type(g) = (s1,...,8n) — 8;
and t; € T(2a)s,, 1 € {1,...,n}:
tu=a| f(ty,...,tn) | g(te,...,tn)

That is, a term is a variable, a nullary function or attribute symbol?, or a term is a
function or attribute symbol applied to a sequence of terms. Note that the indexing of
signature symbols using sorts extends to terms in a natural way.

We interpret terms as defined below. Because we have a first-order logic, we need to
define first how logical variables are assigned to the elements of quantification domains:

Definition 2.5 (Assignment) Given a structure § = (B, U, G, A) for a signature
A =((5,9Q),A,T), an assignment N for § maps each Z; to s,, for each s € Sx.

Definition 2.6 (Interpretation of Terms) Given an interpretation structure § = (B,
U, G, A) for a signature A = ((S,9Q), A, ') and an assignment N for 6, [|* : a — sy
defined below is an interpretation of terms of sort s € S at a world w € ap:

o [2]"N (w) 4 N(2) if © € B
o [ty)PV () & fr (0] (), - 8] (w));
* [g(tr, -)] (w) € (G(9) (] (w), .-, [ta] " (w))) (w).

* Nullary attribute symbols are called flexible constants in [3].

5

DUARTE AND MAIBAUM

Formulae are written in terms of logical and extra-logical symbols and appear in
specifications and proofs. The set of logical symbols consists in the set of variables V
together with some classical and temporal connectives. Apart form the uses of logical
equality, universal quantifier and propositional connectives — and —, atomic formulae
are the “beginning of time” connective beg and the application of an action symbol over
a sequence of terms. Define the set of formulae those considered atomic together with
applications of the non-strict “in all alternative current instants” connective A and the
strict “strong until” connective V.

Definition 2.7 (Formulae) The set F(Za) of formulae is defined by the production
rule below, provided that ¢ € Ta, type(c) = (s1,...,5); ti € T(Ea)s;, © € {1,...,n};
z € E; and g; € F(Ea), j € {1,2}:

gu=(ti=t)|a—=a¢|-q |V qlcl,...,ta) | beg | Alg) | (¢1)V(g2)
The set of expressions is defined as follows: E(Za) ¥ T(ZA) U F(ZA).

The nullary connective beg denotes the beginning of time in each behaviour. Given
formulae p and ¢, A(p) means that p happens in any instant that could succeed the
actual past history and (p)V(¢) means that p occurs strictly in the future (i.e. after the
current moment) and ¢ happens from the next instant until but not necessarily including
the moment of that occurrence®. We prefer to use this strict strong until operator V
as proposed by Kamp because other usual linear future time connectives all become
definable in this way. The inclusion of the universal modality A in our languages makes
the dual E definable, the modality of possibility.

Our branching-time modality is interpreted using an equivalence relation ~ over be-
haviour prefixes. We define this relation in a pointwise manner, saying that two worlds
of a frame are equivalent if and only if all the attribute and action symbols have identical
interpretation in both worlds. The satisfaction of logical formulae is defined below:

Definition 2.8 (Satisfaction of Formulae) Given a signature A, the satisfaction of
a A-formula at world w; of a behaviour L (i.e., w; € dom L) by a structure § = (B, U,
G, A) with assignment N is defined as follows:

N, L,w;) = alty, ..., ta) iff wi € Aa)([t]7Y (wi), ..., [ta]®™ (w)));
N, L,w;) &= —p iff it is not the case that (0, N, L, w;) = p;
N,L,w;) Ep— qiff (0, N, L,w;) = p implies (6, N, L, w;) = ¢;

(0,
(6,
(6,
(

)

)
N, L,w;) = Vz - p iff for every v € cod N and every assignment N, for such that
N,(y) = N(y) if y # x and N,(y) = v otherwise, (6, N,, L, w;) E p;
)
)

(0, N, L,w,) | (t = to) iff [t2]"" (wi) = [ta]"" (w);

(6, N, L,w;) = beg iff L(w;) = 0;

(0,N, L,w;) = pVq iff there is w; € dom L with L(w;) < L(w;), (8, N, L, w;) = p
and (0, N, L, wy) = ¢ for any wy, € dom L where L(w;) < L(wg) < L(w;);

(0,N,L,w;) = Ap iff for every L; € A such that w; ~ (Lj’1 o L)(wy) for each wy €
dom L with L(wy) < L(w;), (8, N, Lj, (L o L)(w;)) = p.

5 pVq (Kamp) = V(p,q) (Gabbay [11]) = ¢qUp (Manna and Pnueli [18]).

6

DUARTE AND MAIBAUM

We adopt interpretation structures as models of logical formulae. Whenever a formula
has a model, the sets of worlds o and g in the underlying frame are not empty.

Now we can define the usual scale of degrees of validity. Definition 2.8 corresponds to
satisfiability. We say that a A-formula p is (locally) true in an interpretation structure
6 = (B,U,A,G) for A at world s of a behaviour L if and only if for every assignment
N, (6,N, L,s) = p. In addition, p is said to be walid in 6 if and only if it is true in each
possible behaviour L and world s. A formula is considered to be universally valid if and
only if it is valid in any possible structure for A. A semantic consequence or entailment
relation ¥ =, p can be simply defined stating that ¢ is valid in @ for every ¢ € ¥ implies
that p is valid in 6, for any admissible structure 6 for A.

Other classical connectives such as 1, T, A, V and < are defined as usual. The
following definitions of temporal connectives are also helpful in specifications and proofs:

» pUqdf gV (p A ¢Vp) (p happens until ¢ does);

* Xpdef pV 1 (p happens in the next instant);

» Fpdf TUp (p happens now or sometime in the future);

* Gpdf —F(—p) (henceforth p happens);

* pWq df Gp Vv pUgq (p happens until ¢ does, even if ¢ never happens);
» Epdf —~A(—p) (pis currently possible).

2.2 Axiom schemes and inference rules

It should be clear at this point that we are dealing with a first-order many-sorted
branching-time logical system with equality. To complete its definition, we shall de-
fine in what follows the logical consequence relation -, for each admissible signature A,
in an attempt to create a proof-theoretic approximation of the semantic consequence
relation defined in the previous section.

We consider that U -, pis a binary relation defined by a non-empty set of derivations
Pra(¥,p) of the conclusion p from the set of hypotheses ¥. Pr is in turn generated by
Az (A), a set of azioms, and I~ , a derivability relation. Ax(A) only contains instances
of aziom schemes, while ~, is generated by applications of inference rules. Derivations
are directed acyclic graphs with vertices labelled with formulae and edges directed from
the hypotheses to the conclusion, such that there are no branching paths and, if p is a
label, p € Az(A), p € ¥ or ¥'|~, p for a set of premises ¥’ derived from ¥. In order to
make derivations more readable, we also consider that source vertices have an incoming
edge, labelled with the name of the corresponding axiom scheme or with Hyp in the
case of hypotheses, and that standard edges are labelled with the name of the respective
justifying inference rule.

Our axiomatisation begins with the classical propositional fragment of the logic. Sche-
matic variables {p, ¢, 7, s} C F(Za) are used for a given classification Zx:

(A1-I) ~,p — (¢ = p) (weakening);

(A2-I) ~,(p— (g— 1)) = ((p— q) — (p — 1)) (distribution);
(A3-N) vy (=p = —=q) = (¢ = p);

(R1-MP) {p,p — ¢}k, a.

DUARTE AND MAIBAUM

As an example of a proof in Hilbert-style, we verify in what follows the derived inference
rule HS (hypothetical syllogism). Since we are not going to state and prove a deduction
theorem for our logical system (any such theorem would not have the usual formulation
anyway due to the temporal character of our system), this inference rule should be
extensively used. The rule is stated and derived as follows:

Lemma 2.9 (Inference Rule HS) The following inference rule for any p € F(A) is
derivable: (HS) {p > q¢,¢q >}, p—r.

Proof:

1. p—gq Hyp
2. g—r Hyp
3. (g—=r)—={@—=(g—r)) Al-I
4. p—(g—r) R1-MP 2, 3
5. p—=(@—r)—=((p—=>q9 —{@—r1)) A2-1
6. (p—q)—>(—r) R1-MP 4, 5
7. p—=r R1-MP 1,6 1

Now we turn to the more interesting axiomatisation of the linear time fragment of the
logic. In the following axiom schemes and inference rules, we adopt the abbreviations of
the non-strict connectives defined in the previous section:

(A4-GV) ~,G(p — q) = (pVr — ¢Vr);

(A5-GV) ~,G(p = q) — (rVp — rVq);

(A6-V) v, pVg — pV (g ApVy);

(AT-V) ~, (P AqVD)Vp — ¢Vp;

(A8-V) b, pVgATVs— (pAT)V(gAS)V(pAS)V(gAS)V (gAT)V(gA s);

(A9-V) ~, (pV q)Vr — pVrV ¢Vr;

(A10-GX) , G(p — Xp) — (Xp — Gp);

(A11-X) , XT;

(A12-Xbeg) kv, ~X(beg);

(R2-G) {p}r, Gp;

(R3-begG) {beg — Gp}h, p.

These are obtained from axiomatisations which also consider the existence of a strong
strict since connective, as discussed in [11], by removing this past-time connective and
including beg instead. Schemes A4, A5 and A9 together with R2 guarantee that we
have a normal modal logic, which can be interpreted over relational structures. A6-7
ensure the transitivity of these relations and we enter in this way the realm of temporal
logics. A8 in the presence of the other schemes implies that time is linearly ordered
towards the future. In particular, due to our choice of initialised time flows, this is
true everywhere. We also adopt A10 to capture temporal induction. We use A1l not
only to guarantee that time flows do not have endpoints but also to ensure that there
is always a next instant, capturing discrete time. Scheme A12 says that no instant

precedes the initial one. Rule R2 is the usual temporal generalisation and R3 may be
called begG-elimination.

DUARTE AND MAIBAUM

The reader may want to verify, using HS after having derived a replacement lemma
for the above fragment of the logic, that schemes A1-10 plus rules R1-2 entail all the
propositional theorems of the consequence relation of Manna and Pnueli in [17]. We use
~X" to denote the provability of such theorems here. Nevertheless, our extension of their
logic is not conservative since we prefer to adopt flows of time with fixed characteristics
in order to minimise the possibility of generating inconsistencies in composing open
distributed system specifications. This would be the case if two composed specifications
could assume respectively flows with and without endpoints, for instance.

The application of temporal logics in the design of software systems has been stream-
lined by the separation of temporal properties in two families and the respective devel-
opment of reasoning principles [2]. Liveness or progress properties stating what a system
eventually performs offer great challenges to verification methods and are usually treated
using an additional well founded induction rule [8]. Safety properties, which define what
a system always ensures, are verified using the following derived inference rule:

Theorem 2.10 (Inference Rule IND) The following inference rule for any p € F(A)
is derivable: (IND) {beg — p,G(p — Xp)}, p.

Proof:

1. beg —p Hyp
2. G(p — Xp) Hyp
3. G(p— Xp) = (p — Gp) ~al
4. p—> Gp R1-MP 2, 3
5. beg — Gp HS 1,4
6. p R3-begG 5

It is important to stress that representing anchored induction using IND is a necessity
since this rule cannot be rephrased as an axiom scheme. As remarked by Kroger [13],
adopting a similar scheme would trivialise the whole logic. In [18], this is overcome as
above, but considering that beg is definable in terms of past time connectives. In TLA,
beg has no logical counterpart, but canonical specifications are expected to define an
initialisation condition.

We choose to axiomatise our branching-time modality as follows:

(A13-A) by A(p — q) = (Ap — Ag);

(A14-A) ~, Ap — p;

(A15-EA) ~, Ep — AEp;

(A16-EV) r~, (Ep)Vg — E(pVyg);

(A17-AV) kv, A(p — X(qUp)) — (p — XA(qUp));
(A18-Ebeg) ~, E(beg) — beg;

(R4-A) {p}h, Ap.

The axiom schemes above define a full branching-time modality, in the sense that there
is no restriction on using A in any context. Axiom schemes A13-15 and rule R4-A
for modal generalisation, although slightly different from the usual formulation, make of
A an S5 modality. Scheme A18 says that the possibility of the current moment being
initial forces it to be the case, meaning that all behaviours are at first synchronised, i.e.,
the level of their initial worlds is the same. A16 requires in addition that a behaviour

9

DUARTE AND MAIBAUM

possesses an alternative in a future moment only if its subsequent history up to but not
including that point could also be realised by the alternative behaviour. Schema A17
means that our notion of possibility is relatively invariant, not becoming more and more
restrictive with the passing of time in selecting possible alternatives to the current world.

As remarked above, first-order logic is required in representing message passing sys-
tems faithfully. We assume that our logical system is equipped with the usual F'ree
variable function, writing p € E(EA) as p(z,y) to stress whenever {z,y} C Free(p).
We also assume the existence of a map {-} associating each A with a substitution re-
lation {-}a C (E(Ea) X E(Ea) X E(2aA)) x E(Ea). For {p,q,r} C E(Ea), the set
{s € E(Ea)|(p,q,7){-}a(s)} represented by its generic element p{q\r} denoting some
substitution of ¢ for r in p is defined in a straightforward way omitted here. The usual
substitution function [-]a : F(Ea) X V X T(ZEa) — F(Ea) becomes a fixed point of this
substitution relation (in which all the possible substitutions have already been made):
plz\t] = ¢ iff ¢ € p{z\t} and ¢{z\t} = {¢}. We say that r is free for ¢ in p if and only if
Free(r) C Free(p{q\r}). As usual, we only allow a substitution p{q\r} to be effected
if r is free for ¢ in p. With these definitions at hand, we can extend our axiomatisation
to capture the first-order fragment as follows:

(A19-Y) ~,Va - p(z) — plz\t];

(A20-Y) ~, Vz-(p— q(z)) = (p = Vo - q(x)), provided that = ¢ Free(p);
(A21-EQ) ~ t=1t;

(A22-EQ) kv, t1 =ty — (af{t\t1} — a{t\t2}), provided that a is an atomic formula;
(R5-Y) {p — q} I, p— Vo -q(z), provided that x & Free(p).

The axiomatisation above is standard. The only exception is perhaps the use of the
substitution relation in A22-EQ to allow the proof of theorems like x = y — (f(x) =
y— f(y) =x), f € Qa, which cannot be derived based only on the substitution function.
In [21], the same notion is adopted.

To conclude our axiomatisation, it remains to show how the other connectives interact
with equality and the first-order quantifiers. This is defined as follows, provided that ¢
is free for = in p and each t; does not contain attribute symbols:

(A23-3V) v, (Fz - p(2)) Vg — 3z - (p(2) Va);
(A24-EQG) ~,t1 = ta = G(t; = ta);
(A25-NEQG) r~,t1 # ta = G(t1 # to);
(A26-YA) ~, Vz - A(p(z)) = A(Vz - p(x));
(A27-EQA) ~, b1 =ty = Aty = to);
(A28-NEQG) ~, t, £ty — Aty # t).

A 23 is a Barcan formula saying that quantification domains do not vary with the passing
of time. It entails the more conventional Vz - Gp(z) — G(Vx - p(x)). Note its similarity
with A16, although in that case the converse is not valid. A24-5 mean that we are
adopting as rigid those terms which do not include attribute symbols. Because of the
side condition in these schemes, we loose the substitutivity property which would allow
us to substitute formulas by logically equivalent ones in any context. A26-8 play roles
similar to A23-5 with respect to the branching-time modality.

10

DUARTE AND MAIBAUM

To conclude our proof-theoretic studies, we state without proof that REPL, a replace-
ment rule, is derivable. This is verified by structural induction on the logical language
based on the monotonicity of our connectives. For A, this means that -, A(p — q) —
(Ap — Ag). Although applicable only to the fragment of the logic without flexible
symbols, this rule is often useful in practice:

Proposition 2.11 (Replacement Rule) Given a signature A, the following inference
rule for any {p, ¢} U{z,y} C F(A) not containing flexible symbols is derivable: (REPL)

{z <y}, plo\x] < plg\yl. L

Having provided a rigorous definition for the model and proof theories of our logical
system, we can now assess some of its features:

Theorem 2.12 (Strong Soundness) VU F, p implies ¥ =, p.

This is verified in the usual way, based on the notion of satisfaction, by ensuring that each
logical axiom is universally valid and each inference rule preserves validity, meaning that
valid premises imply valid conclusions. An additional structural induction argument on
our Hilbert-style proofs guarantees that each entailment preserves validity, i.e. U, p
implies ¥ =, p for any set of sentences ¥ U {p}. The complete proof appears in [8]. W

Concerning completeness, it is not difficult to see that, because it is possible to code
Peano arithmetic in a theory, our logical system is incomplete [14,19]. Still, it may be
possible to find similar interpretation structures to recover completeness, perhaps along
the lines suggested in [3]. Before proceeding with the study of our first-order framework,
it appears to be necessary to determine whether or not the propositional fragment of the
logic is medium complete, meaning that the converse of the statement above holds for
any finite ¥. We already know that such fragment is not compact and therefore strong
completeness fails again. Research in this direction is under way.

2.8 Structuring concepts

We adopt a stepwise development process inspired by research on the theory of abstract
data types [16]. Abstract specifications are gradually refined until a concrete implemen-
tation is produced. Open distributed system specifications are structured in terms of
temporal theory presentations, which are defined as follows:

Definition 2.13 (Theory presentation) A theory presentation is a pair ® = (A,),
where A is a signature and ¥ is a finite set of A-formulae (the presentation azioms).

Defining open distributed systems using theory presentations, their structure and rela-
tionships can be respectively captured using particular signature and theory morphisms,
categorical notions which are introduced below:

Definition 2.14 (Signature Morphism) Given two signatures A; = (X4, A, I'1) and
Ay = (89, Ag, T'9), a signature morphism 7 : Ay — Ay consists of:

* a morphism of algebraic structures 7, : 3; — o, i.e. for each s € Sa, there is a
unique 7,(s) € Sa, and for each f € Qa, such that type(f) = (s1,...,5,) — s there
is a unique 7,(g) € Qa, such that type(7,(g)) = (7u(81), - - -, Tw(80)) = Tu(8);

11

DUARTE AND MAIBAUM

* a morphism of set-theoretic nature 7, : A; — A, i.e. for each g € A; such that
type(g) = (s1,...,8,) — s there is a unique 7,(g9) € A such that type(r,(9)) =
(To(81)y -y Tu(Sn)) = Tu(8);

* amorphism of set-theoretic nature 7, : I'y — I'y, i.e. for each ¢ € I'y such that type(c)=
(S1,- - -, Sn), there is a unique 7,(c) €'y such that type(r,(c)) =(Tu(51),- - -, 7w (Sn))-

Signature morphisms translate the symbols of a signature into those of another one.
It is straightforward to extend this notion to provide compositional definitions for the
translation of classifications, terms, formulae and sets thereof under a given signature
morphism. These are omitted here.

Definition 2.15 (Presentation Morphism) Given two presentations ®; = (A, ¥;)
and &, = (A, Uy), a presentation morphism 7 : ®; — P, is a signature morphism lifted
to formulae such that U, A, 7(p) for every p € ¥, (preservation of consequences).

The constraint requiring the preservation of consequences of each presentation axiom,
based on the logical consequence relation I, forbids that some of these consequences be
forgotten when a presentation is considered as part of another one, allowing the definition
of composable software artifacts. This is best captured by the following result:

Proposition 2.16 (Categories of Signatures and Presentations) The collections
of signatures and theory presentations, together with the corresponding morphisms, de-
fine co-complete categories Sig and Pres respectively. [

3 Example: The Drinking Philosophers Problem

In this section, we study the drinking philosophers problem [6], a generalisation of re-
source allocation problems in distributed systems. A group of philosophers is gathered
around a table to drink from some bottles of beverage. Each philosopher may be tranquil,
thirsty or drinking. Depending on the bottles he shares with his neighbours and on the
desired beverages, a philosopher may generate conflicts, since the usage of bottles is con-
sidered to be mutually exclusive. Any solution of this problem must guarantee symmetry,
that philosophers must all obey the same rules, and progress, that thirsty philosophers
eventually drink the desired beverages, among other less demanding requirements.

A better known but restricted formulation of resource allocation is the dining philoso-
phers problem, in which pairs of neighbours share a single chopstick. Due to their access
to this shared resource, such philosophers necessarily have mutually exclusive actions.
As in the drinkers case, any solution must guarantee symmetry and progress, but the
behaviour of each philosopher cycles through a series of distinghished states, from think-
ing to hungry to eating. A modular solution of a simplified version of this problem in
terms of temporal theory presentations was presented in [10]. Therein, channels are used
to guarantee the mutually exclusive usage of chopsticks (actually forks). Moreover, the
local progress assumptions that each philosopher eventually becomes hungry and later
raises his chopsticks is used in the derivation of a global property ensuring that they
recurrently cycle between eating and thinking states. This theorem is not straigtforward
to verify, since individual philosophers are not required to lower their chopsticks, but
this property emerges when they are put together in the appropriate manner to form a
system. By the way, to ensure the eventual lowering of chopsticks in the local context

12

DUARTE AND MAIBAUM

of single philosophers, some additional assumptions have to be made, as outlined in [4],
stating not only the willingness of each philosopher to do so whenever eating but also
a strong fairness assumption called politeness, that requires the eventual occurrence of
this action whenever it is always eventually possible.

We use the complete solution of the diners problem outlined above (based on [10] and
[4]) as part of the implementation of our drinkers solution. That is, we propose a solution
in which philosophers can simultaneously drink and eat, this last activity being performed
just due to an implementation decision, with philosophers having local attributes to
record their current state in each of these processes. As outlined in [6], this strategy is
normally adopted to establish a distinction between philosophers in resolving conflicts,
by considering that eating philosophers always receive priority in drinking conflicts. In
our case, we also use this strategy to guarantee progress in our solution. Symmetry is
ensured by requiring that all philosophers comply with the same specification.

The specification, configuration and verification of the proposed solution of the drink-
ing philosophers problem is presented in the Appendix. The main result presented
therein is the proof of correctness of our solution, which is summarised by the provabil-
ity of the following theorem, formulated in the context of a theory presentation D-PHir,
which describes drinking philosophers:

F thirsty(xz) = TRUE — F(drinking(z) = TRUE) (1)

This example is very illustrative as a means of justifying the features of our logical system.
Sentence (1) is of first-order nature and the entire problem is formulated using this
framework because, differently from the diners problem, the number of beverages that
philosophers can share and drink in each situation is finite but a prior: undetermined.
Moreover, the verification of (1) can only be performed in a local context by relying on
the branching-time assumptions of willingness (2) and politeness (3), stated among the
axioms of PuiL, describing dining philosophers:

eating = TRUE — FE(chops |) (2)
GFE(chops |) — F(chops |) (3)

4 Final Remarks

We have presented a new first-order many-sorted branching-time logical system with
equality devoted to support the rigorous development of open distributed systems. Many
other logical systems exist with similar features and could perhaps be used for the same
purpose. These are analysed below.

Among first-order formalisms, our system keeps many similarities with those developed
by Lamport (TLA) [15] and by Manna and Pnueli [17]. Those systems consider the ex-
istence of external enabledness predicates (Enabled and En, respectively), analogous to
our E, which have their statement and/or proof justified by the possibility of occurrence
of some computations (for TLA, a syntactic definition of Enabled was indeed provided
recently in [1]). There are some minor differences in relation to our system, such as the
transitional definitional actions adopted in TLA, the absence of the X (next) connective
in this system and its introduction in the second one as a term as well. However, the
most relevant distinction in relation to our work seems to be the characterisation of those
systems to be of linear nature, as opposed to our branching-time system.

13

DUARTE AND MAIBAUM

Our logical system differs substantially from other propositional branching-time for-
malisms. The main distinction in relation to CTL [9], for instance, is that E is regarded
as a full branching-time modality here, in the sense that there is no restriction on using
this connective in any context, whereas in CTL it can only enclose a formula surrounded
by the linear time connectives F or G. Another distinction is in relation to CTL* and
other Ockhamist branching-time systems (e.g. [7,23]), which have an interpretation of
E biased by possible future events. We believe that the adopted immediate interpre-
tation of E is more faithful to the intuition of software engineers in developing open
distributed systems. In fact, this interpretation was originally proposed by Zanardo [25]
in the context of a propositional logical system with a different language, time frames
and interpretation of extra-logical symbols. Obviously, our system differs radically from
Peircean propositional temporal formalisms [11], which are defined and axiomatised in
a substantially different way, without a branching-time modality.

The reported work suggests many promising directions for future research. In would
be interesting to attempt to introduce continuous time or intervals in our framework.
In addition, proposing an alternative categorical model theory for (at least the proposi-
tional fragment of) our logic could potentially contribute to define, in a different style,
a more effective proof-theory. Finally, more experimental work remains to be developed
concerning the application of our logical system in the refinement of open distributed
system specifications.

References
[1] Abadi, M. and S. Merz, On TLA as a logic, in: M. Broy, editor, Deductive Program Design,
NATO ASI Series, Springer-Verlag, 1996 pp. 235-271.

[2] Alpern, B. and F. B. Schneider, Defining liveness, Information Processing Letters 21
(1985), pp. 181-185.

[3] Andréka, H. et al., Effective temporal logics of programs, in: L. Bolc and A. Szalas, editors,
Time and Logic: A Computational Approach, UCL Press, 1995 pp. 51-129.

[4] Barreiro, N., J. Fiadeiro and T. Maibaum, Politeness in object societies, in: R. Wieringa
and R. Feenstra, editors, Information Systems: Correctness and Reusability (1995), pp.
119-134.

[5] Barringer, H., The use of temporal logic in the compositional specification of concurrent
systems, in: A. Galton, editor, Temporal Logics and their applications (1987), pp. 53-90.

[6] Chandy, K. M. and J. Misra, The drinking philosophers problem, ACM Transactions on
Programming Languages and Systems 6 (1984), pp. 632-646.

[7] do Carmo, J. and A. Sernadas, Branching versus linear logics yet again, Formal Aspects
of Computing 2 (1990), pp. 24-59.

[8] Duarte, C. H. C., “Proof-Theoretic Foundations for the Design of Extensible Software
Systems,” Ph.D. thesis, Department of Computing, Imperial College, London, UK (1998).

[9] Emerson, E. A., Temporal and modal logic, in: J. van Leeuwen, editor, Formal Models and
Semantics, Handbook of Theoretical Computer Science, Elsevier, 1990 pp. 996-1072.

14

DUARTE AND MAIBAUM

[10] Fiadeiro, J. and T. Maibaum, Temporal theories as modularisation units for concurrent
systems specification, Formal Aspects of Computing 4 (1992), pp. 239-272.

[11] Gabbay, D., I. Hodkinson and M. Reynolds, “Volume I,” Temporal Logic: Mathematical
Foundations and Computational Aspects, Oxford Science Publications, 1994.

[12] Koymans, R., Specifying message passing systems requires extending temporal logic, in: 6th
ACM Symposium on Principles of Distributed Computing (1987), pp. 191-204.

[13] Kroger, F., “Temporal Logic of Programs,” EATCS Monographs on Theoretical Computer
Science 8, Springer-Verlag, 1987.

[14] Kroger, F., On the interpretability of arithmetic in temporal logic, Theoretical Computer
Science 73 (1990), pp. 47-60.

[15] Lamport, L., The temporal logic of actions, ACM Transactions on Programming Languages
and Systems 16 (1994), pp. 872-923.

[16] Maibaum, T., P. A. S. Veloso and M. Sadler, A theory of abstract data types for program
development: Bridging the gap?, in: H. Ehrig et al., editors, Proc. International Conference
on Theory and Practice of Software Development (TAPSOFT’85), vol. II, Lecture Notes
in Computer Science 185 (1985), pp. 214-230.

[17] Manna, Z. and A. Pnueli, How to cook a temporal proof system for your pet language, in:
Proc. 10th Symposium on Principles of Programming Languages (1983), pp. 141-154.

[18] Manna, Z. and A. Puueli, The anchored version of the temporal framework, in: J. W.
de Bakker, W.-P. de Roever and G. Rozenberg, editors, Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency, Lecture Notes in Computer Science
354 (1989), pp. 200—284.

[19] Merz, S., Decidability and incompleteness results for first-order temporal logics of linear
time, Journal of Applied Non-Classical Logic 2 (1992).

[20] Pnueli, A., The temporal logic of programs, in: Proc. 18th Symposium of Foundations of
Computer Science (1977), pp. 45-57.

[21] Sernadas, A., C. Sernadas and J. F. Costa, Object specification logic, Journal of Logic and
Computation 5 (1995), pp. 603—630.

[22] Sistla, A. P., E. M. Clarke, N. Francez and A. R. Meyer, Can message buffers be aziomatised
in linear temporal logic?, Information and Computation 63 (1984), pp. 88-112.

[23] Stirling, C., Modal and temporal logics, in: S. Abramsky, D. Gabbay and T. Maibaum,
editors, Volume II, Handbook of Logic in Computer Science, Oxford Science Publications,
1992 pp. 477-563.

[24] van Benthem, J., “The Logic of Time: A Model Theoretic Investigation into the Varieties
of Temporal Ontology and Temporal Discourse,” Synthese Library 156, Kluwer Academic
Publishers, 1991, 2nd edition.

[25] Zanardo, A., A complete deductive system for since-until branching time logic, Journal of
Philosophical Logic 20 (1991), pp. 131-148.

[26] Zanardo, A., Branching-time logic with quantification over branches: The point of view of
modal logic, Journal of Symbolic Logic 61 (1996), pp. 1-39.

15

DUARTE AND MAIBAUM

Appendix: Drinking Philosophers Problem Detailed Solution

Here we present in greater detail our solution of the drinking philosophers problem. This
solution is modularly organised in terms of theory presentations, which specify the local
language and behaviour of each object, and presentation morphisms, which determine
the configuration of the specified system.

The vocabulary of drinking philosophers (signature) is defined as part of the specifi-
cation D-PHuiL, presented in Figure 1. We assume the existence of two sorts comprising
beverages and booleans (described in separate omitted presentations). The state of each
philosopher is determined by the value of the attributes thirsty and drinking, which take
beverages as arguments and return boolean values representing respectively whether or
not a philosopher is thirsty for or drinking a specific beverage. Philosophers can only
perform one out of three actions related to each specific beverage, namely to become
thirsty (bc_thirsty), to drink and stop drinking (bottle 1/ bottle |) from a specific bottle.

The behaviour of each philosopher is ruled by the axioms in specification D-PuiL. Ax-
iom (A.1.1) states that the effect of becoming thirsty is a change of value in the attribute
thirsty. Axioms (A.1.2) and (A.1.3) define similar effects concerning the occurrence of
bottle 1 and bottle |. The next two axioms, (A.1.4) and (A.1.5), specify locality proper-
ties stating that attribute values change only when the appropriate philosopher actions
take place. These axioms are required here because, differently from [10], we do not adopt
locality as a logical property. The subsequent three axioms concern the permission of
occurrence of each action: a philosopher may become thirsty for a beverage only if not
already so (A.1.6); a bottle can be used from drinking only if the philosopher is thirsty
for the respective beverage and is not drinking (A.1.7); and a bottle can be discarded
only if the philosopher is currently using it for drinking (A.1.8). In addition to this,
there is a set of axioms dealing with the local temporal behaviour of philosophers. In
the beginning, philosophers are not drinking, according to (A.1.9); in each occasion, all
the required bottles are used or dropped simultaneously, due to (A.1.10) and (A.1.11);
and a philosopher eventually becomes thirsty for each beverage (A.1.12). Finally, we
make some local assumptions concerning how these objects loosely interact with their
surrounding environments. Axiom (A.1.13) states a willingness property of each philoso-
pher of possibily disposing of his bottles eventually whenever drinking. Axiom (A.1.14)
is a fairness requirement, normally called politeness [4], stating that bottles should be
eventually dropped if it is always eventually possible to do so.

As previously mentioned, we adopt a dining philosophers solution as part of the im-
plementation of our drinkers problem solution. The proposed design structure is rather
standard, consisting in a presentation to represent the problem domain, D-Pui. detailed
above, another one to capture implementation details, PuiL partially described in [10],
and a third specification to determine how the problem and the implementation are re-
lated, X-PuiL presented in Figure 2. In categorical terms, we define the following diagram
D-PuiL — X-PHIL < PHIL to capture this structure.

The specification X-PuiL is rather simple, reflecting its unique purpose of relating
problem and implementation. Because PuiL and D-PuiL are imported in X-PuiL without
collapsing any of their symbols, we obtain as a result the desired composition of dining
and drinking states in the resulting presentation. The respective actions, however, are not
completely independent, due to the existence of axiom (A.2.1) obliging the simultaneous

16

DUARTE AND MAIBAUM

Specification D-PHIL
sorts bev(erage), bool(ean)
constants T(RUE), F(ALSE) : bool
attributes thirsty, drinking : bev — bool
actions bc_thirsty(bev), bottle 1 (bev), bottle | (bev)
axioms z,y : bev;v : bool
be_thirsty(z) — X(thirsty(z) = T) (A.1.1)
bottle 1 () — X(drinking(xz) = T) (A.1.2)
bottle | (z) — X(drinking(z) = F A thirsty(z) =F) (A.1.3)
be_thirsty(z) V bottle | (z) V (thirsty(z) = v A X(thirsty(z) = v)) (A.1.4)
bottle 1T (z) V bottle | (z) V (drinking(z) = v A X(drinking(z) = v)) (A.1.5)
be_thirsty(z) — thirsty(z) =F (A.1.6)
bottle 1+ (z) — thirsty(z) = T A Dy - drinking(y) = T (A.1.7)
bottle | (x) — drinking(z) =T (A.1.8)
beg — drinking(z) =F (A.1.9)
thirsty(x) = T A thirsty(y) = T — (bottle 1 (z) <> bottle T (y)) (A.1.10)
drinking(z) = T A drinking(y) = T — (bottle | (z) <> bottle | (y)) (A.1.11)
thirsty(z) = F — F(bc_thirsty(z)) (A.1.12)
drinking(z) = T — FE(bottle | (x)) (A.1.13)
GFE(bottle | (z)) — F(bottle | (x)) (A.1.14)
End

Fig. 1. Specification of drinking philosophers.

Specification X-PHIL
imports PHIL [forks t— chops 1, forks |— chops]

imports D-PHIL
axioms z : bev

eating = T A thirsty(z) = T A drinking(z) = F — (chops |« bottle 1 (z)) (A.2.1)
End

Fig. 2. Implementation of drinking philosophers.

occurrence of the lowering of chopsticks and the grabbing of some bottles whenever the
philosopher is eating and thirsty. This is how we effectively connect the solution of
the diners problem to our solution. In addition, this seems to be a minimalist set of
assumptions to relate both problems in the desired way.

What remains to be described about the configuration of our system regards the
disposal of philosophers and beverages around a table. We assume that each pair of

17

DUARTE AND MAIBAUM

Bottle
X-Bottles;
D-Bottle +————————— B-Channel > D-Phil,———— B-Channel
‘ '
X-Phil,
o e |
B-Channel ; C-Channel— D-Chops *— C-Channel— Phil;——— C-Channel
| |
| l |
! X-Chops |
| |
| T |
: Chops :
4 ! v | 4
D-Phil;— X-Phila<:— Phil, Chops —— X-Chops +— D-Chops : D-Bottle — X-Bottles®#— Bottle
A | b | A
| |
| Chops 1
| |
| l |
! X-Chops !
| |
| T |
B-Channel : C-Channel—> D-Chops *— C-Channel— Phily¢——— C-Channel :
L o o o l,_ __________ |
X-Phily
, f
D-Bottle +———————— B-Channel > D-Phil,<——— B-Channel
X-Bottle1s
Bottle

Fig. 3. Configuration diagram for three distinct philosophers and beverages.

neighbours not only shares a set of beverage bottles but also a chopstick. The definition
of chopsticks (Cror) and their mutually exclusive usage through channels (C-CHANNEL) is
detailed in [10] and omitted here. The construction of sets of bottles (BorrLe) and their
sharing through specific channels (B-Cuanner) is performed in an analogous manner,
which is also omitted. Specifically, these constructions follow the same design structure
described above to implement drinkers in terms of diners, with resources such as chop-
sticks and sets of bottles playing the role of implementation details and the respective
interfaces for ensuring synchronised usage describing the problem domain (D-Cuop and
D-BorrLE respectivelly).

In order to make concrete use of the definitions above, we first assume the existence
around a table of three philosophers — akira (a), shiba (b) and joshua (c) — drinking
three different kinds of beverages — sake (1), shochu (2) and mirin (3). This config-
uration is formalised by the diagram in Figure 3. Note that we make full use of the
configuration proposed in [10], particularised to three philosophers only, surrounding the
respective diagram with dashed lines in the figure. Since the philosophers are represented
by instances of temporal presentations, no confusion arises between them, but we have
to adopt additional assumptions concerning beverages, not only to ensure their existence
but also to distinguish them from each other through appropriate axioms in the respec-
tive purely first-order theory presentation. In addition, we are obliged to particularise
the interfaces describing bottle sets (X-BoTTLE), in order to prevent the occurrence of ac-

18

DUARTE AND MAIBAUM

tions concerning beverages which are not shared between philosophers. All these details
are marked through indices in the diagram. Computing the co-limit of this diagram,
by putting all these descriptions together in a minimalist presentation called SysTewm in
the way suggested by the morphisms (collapsing shared symbols whenever required), we
obtain a specification of the whole resulting system.

Having defined our solution, we are left with the task of verifying the main correctness
property for the problem, namely that in the configuration above thirsty philosophers
drink the desired beverages eventually. We prove first two helpful properties suggested
in [6], based on specification axioms (Az) and theorem proofs (Th) developed in [10,4]:

A. A thinking-thirsty philosopher becomes hungry or drinking:

1. hungry = F — F(bc_hungry) Az PHIL
2. hungry = F — F(bc_hungry) V F(bottle 1 (z)) OR-R 1
3. hungry = F — F(bc_hungry V bottle 1 (z)) DIST-ORF, HS 2
4. hungry = F A thirsty(xz) = T Adrinking(z) =F — AND-L 3

F(bc_hungry V bottle T (x))
B. Philosophers (recurrently) lower their chopsticks:

1. F(eating =T) Th PHIL
2. F(eating = T) — FFE(chops |) MON-GF, R2-G Az yiiiingness PHIL, R1-MP
3. F(eating = T) — FE(chops |) IDEM-F, HS 2
4. FE(chops |) R1-MP 1, 2
5. F(chops |) R2-G 4, R1-MP Az,iteness PHIL

At this point in the proof, we rely on three lemmas that reflect the possible state tran-
sitions performed by philosophers connected to a drinking-eating table. The following
definitions characterise the source states of each of these transitions:

d & hungry = F A thirsty(z) = T A drinking(z) = F
e 4f hungry = T A thirsty(z) = T A drinking(z) = F
[dfeating = T A thirsty(z) = T Adrinking(z) = F
The verification of the aforementioned lemmas can be performed based on a common

argument which shows the actions of philosophers happening in a specific order. We
develop below a derivation for the first case, which is later reused in each required proof:

C. Allowed actions in a thinking-thirsty state:

1. hungry=F — from Az_locality PHIL
(hungry = F)W (hungry = F A (bc_hungry V chops |))

2. hungry = F — —chops | Az PuiL, CONP, HS

3. hungry = F — (hungry = F)W (hungry = F A bc_hungry) 1, 2"

4. thirsty(z) =T — from (A.1.4)
(thirsty(z) = T)W (thirsty(x) = T A (be-thirsty V bottle | (x)))

5. thirsty(xz) = T — —bc_thirsty (A.1.6), CONP, HS

6. thirsty(z) =T — (thirsty(z) = T)W (thirsty(z) = T A bottle | (z)) 4, 5"

7. drinking(z) =F — from (A.1.5)
(drinking(xz) = F)W (drinking(z) = F A (bottle 1 (z) V bottle | (z)))

8. drinking(z) = F — —bottle | (x) (A.1.8), CONP, HS

9. drinking(z) = F — (drinking(xz) = F)W ((drinking(xz) = F A bottle t (z)) 7,8""

10. d — (d)W(d A (bec_hungry V bottle | (z) V bottle T (z))) 3,6,9""

19

O NSO W=

9

10. thirsty(z) = T Adrinking(z) = F — F(drinking(z)

DUARTE AND MAIBAUM

Now we develop the proof of each lemma, based on our specification axioms and
previous results, where the derivation above is referred to as Il¢:

D. A
1.

2
3
4
5.
6
A

PR AR b o

NSOt W

thinking-thirsty philosopher becomes hungry-thirsty or drinking:

drinking(z) = F — —bottle | (z) (A.1.8), CONP, HS
. d— (d)W(d A (be_hungry V bottle 1 (z))) 1, I~™"
. d— F(d A (bc_hungry V bottle T (z))) A 2T
. d N\ be_hungry A —bottle t (z) — F(e) Az PuiL RPL-XF, HS, (A.1.6), (A.1.8)
bottle 1 () — F(drinking(z) = T) (A.1.2), RPL-XF, HS
. d — F(eVdrinking(z) =T) AND-I 4, 5; TRAN-F, R1-MP, HS 3

hungry-thirsty philosopher becomes eating-thirsty or drinking:
{ II* 4f TIg[d — e, hungry = F — hungry = T, bc_hungry + chops 1]}

drinking(z) = F — —bottle | () (A.1.8), CONP, HS
e — (e)W (e A (chops 1 Vbottle 1 (z))) 1, I ™"
hungry = T — F(chops 1) Az PHIL
e — F(chops 1 Vbottle 1 (z)) AND-L 3, OR-R, DIST-ORF, HS
e — F(e A (chops 1 Vbottle T (x))) 4,2 ""
e A chops T A=bottle 1 (z) — F(f) Az PuiL, RPL-XF, HS, (A.1.6), (A.1.8)
bottle 1 () — F(drinking(z) = T) (A.1.2), RPL-XF, HS
e = F(f Vdrinking(z) = T) AND-I 6, 7; TRAN-F, R1-MP, HS 5

eating-thirsty philosopher becomes thinking-drinking:
{ II** d¢f TIg[d — f, hungry = F — eating = T, bc_hungry — chops ||}

drinking(z) = F — —bottle | (x) (A.1.8), CONP, HS
[= (fYW(f A (chops | Vbottle 1 (z))) 1, I M7
f — F(chops |) A1-I, R1-MP B.
[= F(f A (chops | Vbottle 1 (z))) 3, 2"
f — F(bottle 1 (x)) (A.2.1), 4 ™"
bottle 1t (z) — F(drinking(z) = T) (A.1.2), RPL-XF, HS
f — F(drinking(z) = T) AND-I 5, 6, TRAN-F, R1-MP

Connecting the three lemmas above using a double or-elimination argument, we con-
clude the verification of the correctness property of our problem:

f — F(drinking(z) = T) F.
F(f) — FF(drinking(z) = T) R2-G 1, MON-GF, R1-MP
F(f) — F(drinking(z) =T) IDEM-F, HS 2
e = F(f) V F(drinking(z) = T) DIST-ORF, HS E.
e — F(drinking(xz) = T) A1-1I, OR-L 3, HS 4
F(e) —» FF(drinking(z) = T) R2-G 5, MON-GF, R1-MP
F(e) — F(drinking(z) = T) IDEM-F, HS 6
d — F(e) VF(drinking(xz) = T) DIST-ORF, HS D.
d — F(drinking(z) = T) A1l-I, OR-L 7, HS 8

T) Th PHIL, Az bool, OR-E 1, 9

11. thirsty(z) = T Adrinking(z) = T — F(drinking(z) = T) A1-I, AND-R, DEF-F, HS
12. thirsty(z) = T — F(drinking(z) = T) Az bool, OR-E 10, 11

Therefore: Fp pyp thirsty(z) = T — F(drinking(z) = T) L

20

